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We study the chromatic polynomial PG(q) for m×n triangular-lattice strips of
widths m [ 12P, 9F (with periodic or free transverse boundary conditions,
respectively) and arbitrary lengths n (with free longitudinal boundary condi-
tions). The chromatic polynomial gives the zero-temperature limit of the parti-
tion function for the q-state Potts antiferromagnet. We compute the transfer
matrix for such strips in the Fortuin–Kasteleyn representation and obtain the
corresponding accumulation sets of chromatic zeros in the complex q-plane in
the limit nQ.. We recompute the limiting curve obtained by Baxter in the
thermodynamic limit m, nQ. and find new interesting features with possible
physical consequences. Finally, we analyze the isolated limiting points and their
relation with the Beraha numbers.
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1. INTRODUCTION

The antiferromagnetic q-state Potts model (1–14) exhibits unusual behavior
not found in ferromagnets. Indeed, its phase diagram and critical



behavior depend crucially on the lattice structure, unlike the ferromagnetic
case where the concept of universality applies. Specifically, for each lattice
L there exists a number qc(L) such that for all q > qc the model is disor-
dered at any temperature, including zero temperature. (11) Exactly at
q=qc(L) the system is disordered at all positive temperatures and has a
zero-temperature critical point. The zero-temperature limit of the anti-
ferromagnetic Potts model is particularly interesting because its partition
function on a finite graph G coincides with the chromatic polynomial
PG(q), which counts the number of ways of coloring the vertices of G using
q colors subject to the constraint that adjacent vertices always receive dif-
ferent colors. (15)

In refs. 16, 17 we undertook a study of the zeros of the chromatic
polynomial when the parameter q is allowed to take complex values (see
ref. 16 for detailed references to the previous literature). In those papers we
studied strips of the square lattice; here we extend that work to the trian-
gular lattice. The triangular-lattice case is of particular interest because the
path-breaking work of Baxter (18, 19) provides a conjectured exact solution in
the thermodynamic limit.

The study of the complex zeros of the chromatic polynomial is
inspired by the Yang–Lee picture of phase transitions. (20) We study families
of graphs Gn for which the chromatic polynomial can be expressed via a
transfer matrix of fixed sizeM×M:

PGn (q)=tr[A(q) T(q)n] (1.1a)

=C
M

k=1
ak(q) lk(q)n , (1.1b)

where the transfer matrix T(q) and the boundary-condition matrix A(q) are
polynomials in q, so that the eigenvalues {lk} of T and the amplitudes {ak}
are algebraic functions of q. Rather than using T(q) to compute the zeros
of the chromatic polynomial for a finite strip m×n, we have focussed on
the direct calculation of their accumulation points in the limit nQ., i.e.,
for the case of an semi-infinite strip. (16, 17, 21–24) According to the Beraha–
Kahane–Weiss theorem, (25–27) the accumulation points of zeros when nQ.
can either be isolated limiting points (when the amplitude associated to the
dominant eigenvalue vanishes, or when all eigenvalues vanish simulta-
neously) or belong to a limiting curve B (when two dominant eigenvalues
cross in modulus). By studying the limiting curves for different values of
the strip width m, we hope to learn new features of the thermodynamic
limit mQ..
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To determine the isolated limiting points, we shall take advantage of
the following simple result: (22)

det D=D
M

k=1
ak D
1 [ i < j [M

(lj−li)2 , (1.2)

where D is theM×M matrix with entries Dij=;M
k=1 ak(lk)

i+j−2=PGi+j−2 .
An important feature of the limiting curve B is that it typically crosses

the positive real axis at a point q0(m).4 Physically, q0(m) corresponds to a

4 If there is more than one such crossing, we define q0(m) to be the smallest such crossing.
When no such crossing occurs, the limiting curve often includes a pair of complex-conjugate
endpoints rather close to the positive real q-axis. In these cases, we define q0(m) to be the
point closest to that axis with positive imaginary part.

point of non-analyticity of the ground-state degeneracy per site. (23, 28) As the
strip width m grows, this crossing point q0(m) increases and presumably
tends to a limiting value q0(.). On the other hand, as mQ. the curve
B=Bm presumably tends to a thermodynamic-limit curve B.. We define
qc to be the largest value where B. crosses the real q-axis: please note that
qc may or may not correspond to crossings of the real axis for any finite m.
In general the value q0(.) is smaller than qc, although for some lattices
they may coincide (this depends on the shape of the curves Bm and B.).
Indeed, in ref. 17 evidence was presented suggesting that for the square
lattice q0(.)=qc=3.

The crucial role of q0 is further emphasized by studying the relation
between chromatic polynomials and the so-called Beraha numbers

Bn=4 cos2
p

n
=2+2 cos

2p
n

for n=2, 3,... . (1.3)

It has been found in a number of cases (21, 22, 29) that chromatic roots tend to
accumulate at some of the Beraha numbers. In the case of the square
lattice, we have found empirically (16, 17) that on a strip of width m with
either free or periodic transverse boundary conditions,5 there is at least one

5 Let m (resp. n) denote the number of sites in the transverse (resp. longitudinal) direction of
the strip, and let F (resp. P) denote free (resp. periodic) boundary conditions in a given
direction. Then we use the terminology: free (mF×nF), cylindrical (mP×nF), cyclic (mF×nP),
and toroidal (mP×nP). In this paper we consider free and cylindrical boundary conditions, as
well as a new type of boundary condition that we shall call ‘‘zig-zag’’ (Section 5).

vanishing amplitude ai(q) at each of the first m Beraha numbers
B2,..., Bm+1 (but not higher ones). It thus appears that in the limit mQ.

all the Beraha numbers will be zeros of some amplitude.6 Moreover, we

6 As we shall see, a similar (but not identical) statement appears to hold true also for the
triangular lattice: see Section 7.2.
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found that the vanishing amplitude corresponds to the eigenvalue obtained
by analytic continuation in q from the one that is dominant at small real q,
in agreement with a conjecture of Baxter (see ref. 19, p. 5255). Thus, the
first few Beraha numbers—namely, those (up to at most Bm+1) that lie
below the point q0(m)—correspond to the vanishing of a dominant ampli-
tude and hence, by the Beraha–Kahane–Weiss theorem, to a limit point of
chromatic roots, while the remaining Beraha numbers do not. As the strip
width m grows, q0(m) tends to q0(.), and the limiting points of chromatic
roots are thus constrained to be the points B2, B3,..., Bp < q0(.). This
scenario for the accumulation of chromatic roots at some of the Beraha
numbers was set forth by Baxter (19) and elaborated by Saleur; (8) further
references can be found in ref. 16.

In the present publication we shall be concerned with the antiferro-
magnetic Potts model on the triangular lattice. For this case, Baxter and
collaborators (18, 19, 30) have determined the exact free energy (among other
quantities) on two special curves in the (q, v)-plane:

v3+3v2−q=0 (1.4)

v=−1. (1.5)

The uppermost branch (v \ 0) of curve (1.4) is known to correspond to the
ferromagnetic critical point, (3, 30) and Baxter (18) initially conjectured
(following a hint of Nienhuis (31)) that the zero-temperature antiferromag-
netic model (1.5) is critical in the interval 0 [ q [ 4. This prediction is
known to be correct for q=2 (32–34) and is believed to be correct also for
q=4. (5, 35, 36) On the other hand, for q=3 the conjecture contradicts the
rigorous result, (37) based on Pirogov–Sinai theory, that there is a low-tem-
perature phase with long-range order and small correlation length.7 In any

7 A Monte Carlo study of the q=3 model found strong evidence for a first-order transition to
an ordered phase at bJ % −1.594. (10)

case, for q > 4 we expect that the triangular-lattice Potts model is noncriti-
cal even at zero temperature; this has recently been confirmed by Monte
Carlo simulation of the models with q=5, 6. (38) We therefore expect that
for the triangular lattice qc=4.

For the model (1.5), Baxter (18) used a Bethe Ansatz to compute three
different expressions gi(q) [i=1, 2, 3] that he argued correspond to the
dominant eigenvalues of the transfer matrix in different regions Di of the
complex q-plane; in a second paper (19) he provided corrected estimates for
the precise locations of D1, D2, D3. Using these formulae, he determined
the value of q0(.) as
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q0(., tri) % 3.81967 (Baxter). (1.6)

One important outcome of the present paper (see Section 6.2) is that the
‘‘phase diagram’’ predicted by Baxter’s formulae is actually more compli-
cated than what Baxter found. In particular, it now appears that the
correct value of q0(., tri) coming from Baxter’s eigenvalues gi is slightly
smaller than Baxter’s value (1.6), the corrected value being

q0(., tri)=B12=2+`3 % 3.73205 (this paper). (1.7)

We therefore conjecture that the isolated limiting chromatic roots of the
infinite-size triangular lattice are B2,..., B11 and possibly B12, rather than
B2,..., B14 as conjectured by Baxter.

To study the approach to the thermodynamic limit, we have computed
the transfer matrix for triangular-lattice strips of widths 2 [ m [ 9 with free
boundary conditions and 2 [ m [ 12 with cylindrical boundary conditions,
and we have determined the corresponding limiting curves B. We have also
undertaken a detailed comparison of our finite-lattice eigenvalues with
Baxter’s eigenvalues gi, and have found a surprising fact (Section 6.3): in
the region of the q-plane corresponding to Baxter’s D3, we find no evidence
in our finite-lattice data of any eigenvalue corresponding to g1. As a con-
sequence, the ‘‘extra’’ branches of the phase diagram found in Section 6.2
appear to be absent after all ! There seem to be two possibilities:

(a) The eigenvalue g1 really is present in the region D3, but only for
strip widths much larger than those we have studied. In this case, the limit-
ing curve B. really would exhibit all the complexities found in Section 6.2,
and the correct value of q0 would be given by (1.7) rather than (1.6).

(b) For some reason, the eigenvalue g1 is not present in this region
(though it is clearly present elsewhere). In this case, the limiting curve B.
would be similar to that depicted by Baxter, and the correct value of q0
would be given by (1.6) after all.

We discuss these issues further in Section 6.4.
Our finite-lattice data also serve as a testing ground for the general

conjectures on Beraha numbers as stated above (see ref. 16 for further
details). We discuss this further in Section 7.2.

Previous studies using a similar transfer-matrix approach have been
made notably by Shrock and collaborators. In particular, they have con-
sidered triangular-lattice strips of width m [ 5 for free and cylindrical

Triangular-Lattice Chromatic Polynomial 925



boundary conditions. (24, 41–44) 8 They have also considered other boundary

8 The case m=4 with cylindrical boundary conditions was first done by Beraha and
Kahane. (21) The case m=5 with cylindrical boundary conditions was first done by Beraha,
Kahane, and Weiss. (22)

conditions for the same lattice. (44–47) 9 Generalizations to nonzero tempera-

9 The case 2F×nP (i.e., cyclic boundary conditions) was first done by Beraha, Kahane and
Weiss. (22)

ture for several boundary conditions have been carried out in refs. 48
and 49. Finally, refs. 47 and 50 discuss some general structural properties
of the Potts-model partition function and chromatic polynomial on square-
lattice and triangular-lattice strips.

This paper is laid out as follows: In Section 2 we discuss some brief
preliminaries. In Section 3 we give our numerical results for free transverse
boundary conditions, and in Section 4 for periodic transverse (cylindrical)
boundary conditions. We have also examined a third type of boundary
conditions, called ‘‘zig-zag,’’ which we introduce and motivate in Section 5.
In Section 6 we analyze Baxter’s (18, 19) exact solution for the thermodynamic
limit and carefully recompute his phase diagram, finding interesting new
features with possible physical consequences; we also compare his predic-
tions for the dominant eigenvalues with our finite-lattice data and comment
on the agreements and discrepancies. Finally, in Section 7 we present our
conclusions.

2. PRELIMINARIES

The general theory of the transfer-matrix method used here has been
explained in ref. 16, and the implementational details of an improved algo-
rithm have been given in ref. 17. Suffice it here to mention that we have
used the Fortuin–Kasteleyn representation (39, 40) of the Potts model in the
computation of the transfer matrix; therefore, all quantities are expressed
as polynomials in q.

To compute the limiting curves B we have used two different tech-
niques: the resultant method and a direct-search method. These techniques
have been described in ref. 16, Section 4.1, and we use here the same con-
ventions and notation.

Let us briefly mention a few improvements/additions to our method-
ology:

Computation of T Points. We have adopted an improved method for
locating T points, based on applying a numerical minimization algorithm
(e.g., Mathematica’s FindMinimum) to the function
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F(q)=(|l1(q)|− |l2(q)|)2+(|l1(q)|− |l3(q)|)2+(|l2(q)|− |l3(q)|)2 , (2.1)

where l1, l2, l3 are the three eigenvalues of the transfer matrix of largest
modulus. At any given q these eigenvalues can easily be computed numeri-
cally by finding the roots of the characteristic polynomial of the transfer
matrix. Using this method, we are able to locate T points far more precisely
than in our previous work.

Fixed Zeros. When q is an integer and the graph G is not q-colorable,
we have PG(q)=0. For this reason, certain small integers q can be ‘‘fixed’’
zeros of the zero-temperature partition function, independent of the strip
length n. In particular, q=0, 1 are roots for all widths m \ 2 and lengths
n \ 1. Furthermore, q=2 is a root for all triangular-lattice strips of widths
m \ 2 and lengths n \ 2, because the triangular lattice is not bipartite.
Finally, q=3 is a root for all cylindrical triangular-lattice strips of widths
that are not multiples of 3 (with lengths n \ 2), because these graphs are
not 3-colorable.

It is interesting to see how these behaviors come about from the point
of view of the transfer-matrix formalism. The partition function on a lattice
of length n has the form

Zn= C
M

k=1
ak(q) lk(q)n−1 , (2.2)

where the {lk} are the eigenvalues of the transfer matrix and the {ak} are
the corresponding amplitudes. A particular value q can then be a ‘‘fixed’’
zero of Z for any of three reasons:

(1) All the amplitudes ak vanish at q. Then Zn(q)=0 for all n \ 1.

(2) All the eigenvalues lk vanish at q. Then Zn(q)=0 for all n \ 2.

(3) ‘‘Mixed case:’’ Neither all the amplitudes nor all the eigenvalues
vanish at q, but for each k either ak or lk vanishes at q (or both). Then
Zn(q)=0 for all n \ 2.

As we shall see, the points q=0 and q=1 will be fixed roots belonging to
Case 1: all the amplitudes vanish due to an overall prefactor q(q−1). The
point q=2 will be a fixed root belonging sometimes to Case 1 and some-
times to Case 3 (and to Case 2 when m=2 for all boundary conditions).
For cylindrical strips where the width is not a multiple of 3, the point q=3
will be a fixed root belonging to Case 2 for m=4P and to Case 3 for
m \ 5P. We shall endeavor to explain in each case the mechanism under-
lying the fixed zeros; these results will be summarized in Section 7.3.
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Computation of Isolated Limiting Points. To find the isolated limiting
points, we first compute symbolically the determinant det D(q) defined by
(1.2); this determinant is a polynomial in q with integer coefficients, typi-
cally of very high degree. We then compute numerically the zeros of this
polynomial, using the MPSolve 2.1.1 package; (51, 52) these zeros correspond
to points q where at least one amplitude ak(q) vanishes. Finally, we test
numerically each of these zeros to see whether the amplitude corresponding
to the dominant eigenvalue is vanishing; if it is, then the point in question is
an isolated limiting point. This method is guaranteed to discover all of the
isolated limiting points. We shall not bother to report here all the zeros of
det D(q), but only (a) the isolated limiting points and (b) the Beraha
numbers Bn that are zeros of some subdominant amplitude. Please note
that whenever Bn is a zero of det D(q), so are all the primitive generalized
Beraha numbers

B (k)n =4 cos2
kp
n
=2+2 cos

2pk
n

(2.3)

where k is relatively prime to n, since they have the same minimal poly-
nomial pn(q) (ref. 16, Section 2.3).

Unfortunately, in some cases the matrix D(q) is so large that we have
been unable to compute symbolically its determinant. In these cases, it is
more convenient to compute numerically the eigenvalues {lj} and their
corresponding amplitudes {aj} and check (a) whether any of the amplitu-
des vanish and (b) whether the amplitude aa associated to the dominant
eigenvalue vanishes. We have restricted our search to certain ‘‘candidate’’
values of q (or neighborhoods in the complex q-plane), namely (a) the
Beraha numbers Bn for n [ 50, and (b) any real or complex values of q ¨B
where zeros of Zn seem to be accumulating as n gets large. When there is a
exact candidate (such as the Beraha numbers Bn), we have computed the
amplitudes with high-precision arithmetic (200 digits of precision at least).
We considered that an amplitude is zero when its absolute value is less than
(for instance) 10−190. When we do not have an exact candidate, we tried to
minimize the dominant amplitude |aa| around a region where zeros of Zn
tend to accumulate as n grows. This situation occurred only for the strips
of widths 8Z and 10Z (‘‘zig-zag’’ boundary conditions, see Section 5). The
condition |aa| M 10−52 holds for all the cases reported here.

In all the cases where we are unable to compute det D(q) symbolically,
we are able to assert that certain points are indeed isolated limiting points,
but we cannot claim with confidence that we have found all of the isolated
limiting points.
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3. NUMERICAL RESULTS FOR THE TRIANGULAR-LATTICE

CHROMATIC POLYNOMIAL: FREE BOUNDARY CONDITIONS

We have computed the transfer matrix T(mF) and the limiting curves
B for triangular-lattice strips of widths 2 [ m [ 9 with free boundary con-
ditions in both directions. We also write Lx as a synonym for the strip
width m.

As explained in ref. 16, the chromatic polynomial for this family of
strip lattices can be written as

Z(mF×nF)=uTHT(mF)n−1 vid (3.1)

where u and vid are certain vectors, and T(mF)=VH is the transfer matrix.
Here H (resp. V) corresponds to adding one new layer of horizontal (resp.
vertical and diagonal) bonds: see Fig. 1(a). The matrices H, V and T(mF)
act on the space of connectivities of sites in the top layer, whose basis
elements vP are indexed by partitions P of the single-layer vertex set
{1, 2,..., m}. In particular, vid=v{{1}, {2},..., {m}}. Since the strip lattices we are
dealing with are planar, only non-crossing partitions P can occur.

(a)

(b)

Fig. 1. Two ways of building a triangular-lattice strip using a transfer-matrix approach.
(a) Standard method (see, e.g., ref. 16). (b) Alternative method (called ‘‘zig-zag’’ boundary
conditions).
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In the particular case of the chromatic polynomial (i.e., the zero-
temperature antiferromagnet), the horizontal operator H is a projection
(H2=H), and we can work in its image subspace by using the modified
transfer matrix TŒ(mF)=HVH in place of T(mF)=VH, and using the basis
vectors

wP=HvP (3.2)

in place of vP. Then we can rewrite (3.1) as

Z(mF×nF)=uTTŒ(mF)n−1 wid (3.3)

where wid=Hvid. Please note that wP=HvP=0 for any partition P that
includes nearest-neighbor sites in the same block, so we can ignore all such
partitions. The dimension of the transfer matrix TŒ(mF) is therefore equal
to the number of non-crossing non-nearest-neighbor partitions of the set
{1, 2,..., m}, which is given by the Motzkin number Mm−1 . (16) To simplify
the notation, we will drop the prime in TŒ(mF) and denote the basis ele-
ments wP by a shorthand using Kronecker delta functions: for instance,
w{{1, 3}, {2}, {4, 6}, {5}} will be written d13d46. We denote the set of basis elements
for a given strip as P={wP}. For instance, the basis for m=3 is
P={1, d13}.

We have checked the self-consistency of our finite-lattice results using
the trivial identity

Z(mF×nF)=Z(nF×mF) (3.4)

for all pairs 2 [ m, n [ 9.

3.1. Lx = 2F

This case is trivial, as the transfer matrix is one-dimensional:

Z(2F×nF)=q(q−1)(q−2)2(n−1). (3.5)

Since there is only one eigenvalue, there is obviously no crossing, hence
B=”. However, there are zeros for all n at q=0, 1 and for n \ 2 at q=2.
The fixed zeros at q=0, 1 arise from a vanishing amplitude, and the fixed
zero at q=2 arises from a vanishing eigenvalue.

3.2. Lx = 3F

The transfer matrix is two-dimensional. In the basis P={1, d13} it can
be written as
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T(3F)=R
q3−7q2+17q−14 q2−6q+9

−q+2 q−3
S (3.6)

and the partition function is equal to

Z(3F×nF)=q(q−1) R
q−1
1
ST ·T(3F)n−1 ·R

1

0
S . (3.7)

The limiting curve B (see Fig. 2) contains three disconnected pieces
and it crosses the real axis at q0 % 2.5698402910. There are six endpoints:

q % 1.2047381150±1.1596169599 i (3.8a)

q % 2.3930361082±0.2538745688 i (3.8b)

q % 3.4022257768±0.5865084714 i. (3.8c)

These results were previously obtained by Roček et al. (24)

Fig. 2. Zeros of the partition function of the q-state Potts antiferromagnet on the triangular
lattices 3F×15F (squares), 3F×30F (circles), and 3F×.F (solid line). The isolated limiting
points are denoted by a × .
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Table I. Real Zeros of the Chromatic Polynomials of Finite Triangular-Lattice Strips

with Free Boundary Conditions in Both Directions, to 12 Decimal Placesa

Lattice 4th Zero 5th Zero 6th Zero

3F×3F
3F×6F 2.552816126636
3F×9F
3F×12F 2.562658027317
3F×15F
3F×18F 2.565287184975
3F×21F
3F×24F 2.566507072062
3F×27F
3F×30F 2.567211365497

4F×4F 2.604661945742
4F×8F 2.618028652707
4F×12F 2.618033986251
4F×16F 2.618033988749
4F×20F 2.618033988750
4F×24F 2.618033988750
4F×28F 2.618033988750
4F×32F 2.618033988750
4F×36F 2.618033988750
4F×40F 2.618033988750

5F×5F 2.618161303055 2.795370504128
5F×10F 2.618033988749
5F×15F 2.618033988750 2.947523648832
5F×20F 2.618033988750
5F×25F 2.618033988750 2.968180058756
5F×30F 2.618033988750
5F×35F 2.618033988750 2.976760450197
5F×40F 2.618033988750
5F×45F 2.618033988750 2.981534673779
5F×50F 2.618033988750

6F×6F 2.618033979731
6F×12F 2.618033988750 3.001429148693 3.054848659601
6F×18F 2.618033988750 3.000001523178 3.100527321592
6F×24F 2.618033988750 3.000000001785 3.118151997375
6F×30F 2.618033988750 3.000000000002 3.127749140385
6F×36F 2.618033988750 3.000000000000 3.133811079422
6F×42F 2.618033988750 3.000000000000 3.137993327670
6F×48F 2.618033988750 3.000000000000 3.141054810628
6F×54F 2.618033988750 3.000000000000 3.143393623378
6F×60F 2.618033988750 3.000000000000 3.145239011028

Beraha 2.618033988750 3 3.246979603717

a A blank means that the zero in question is absent. The first three real zeros q=0, 1, 2 are
exact on all lattices. ‘‘Beraha’’ indicates the Beraha numbers B5=(3+`5 )/2, B6=3,
and B7.
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The determinant det D(q) has the form

det D(q)=q2(q−1)2 (q−2)3. (3.9)

Thus, it vanishes at the first three Beraha numbers q=0, 1, 2. At those
points the dominant amplitude vanishes, hence they are isolated limiting
points.

In fact, the partition function vanishes at q=0, 1 for all n, and at
q=2 for all n \ 2. Obviously, at q=0, 1 both amplitudes vanish, due to
the prefactor q(q−1) in (3.7). [This happens for all strips of width m \ 2;
we will henceforth call these zeros ‘‘trivial.’’] At the fixed zero q=2, there
is one nonzero eigenvalue (la=−1) with a vanishing amplitude and one
zero eigenvalue with a nonvanishing amplitude; we are therefore in Case 3
described in Section 2. The fourth real zero (see Table I) converges at an
approximate 1/n rate to the value q0 % 2.5698402910.

3.3. Lx = 4F

The transfer matrix is four-dimensional. In the basis P=
{1, d13, d24, d14}, it takes the form

T(4F)=R
T11 T12 T13 T14

−q2+5q−6 q2−5q+6 −q+3 −2(q−3)
−q2+5q−6 q2−5q+6 q2−6q+9 q2−8q+15
q−2 q2−5q+6 −q+3 q2−7q+13

S (3.10)

where

T11=q4−10q3+39q2−70q+48 (3.11a)

T12=q3−9q2+26q−24 (3.11b)

T13=q3−9q2+28q−30 (3.11c)

T14=q3−10q2+36q−45. (3.11d)

The partition function is equal to

Z(4F×nF)=q(q−1) R
(q−1)2

q−1
q−1
q−2

S
T

·T(4F)n−1 ·R
1
0
0
0

S . (3.12)
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Fig. 3. Zeros of the partition function of the q-state Potts antiferromagnet on the triangular
lattices 4F×20F (squares), 4F×40F (circles), and 4F×.F (solid line). The isolated limiting
points are denoted by a × .

The limiting curve B (see Fig. 3) contains two complex-conjugate dis-
connected pieces that do not cross the real axis. The closest points to the
real axis are q0 % 2.7592502040±0.1544431251 i. There are six endpoints:

q % 0.8164709452±1.2804094073 i (3.13a)

q % 2.7592502040±0.1544431251 i (3.13b)

q % 3.6398304896±0.5986827987 i. (3.13c)

There are T points at q % 3.3341785562±0.8829730283 i. These results
were previously obtained by Roček et al. (24, 41)

The determinant det D(q) has the form

det D(q)=−q4(q−1)4 (q−2)13 (q2−3q+1)(q−3)6

×(q4−11q3+46q2−86q+61)2. (3.14)

We recognize, as factors in (3.14), the first five minimal polynomials pk(q)
for the Beraha numbers Bk (ref. 16, Table I); therefore det D(q) vanishes at
the first five Beraha numbers q=0, 1, 2, B5, 3. The dominant amplitude
vanishes at q=0, 1, 2, B5, so these are isolated limiting points. At q=3
only two subdominant amplitudes vanish, so this is not an isolated limiting
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point. Similarly, all of the zeros of the last factor in (3.14) correspond to
the vanishing of subdominant amplitudes only, so none of them is an
isolated limiting point.

In fact, the partition function vanishes at q=0, 1 for all n, and at
q=2 for all n \ 2. The fixed zeros at q=0, 1 are trivial. At q=2, there are
three zero eigenvalues and a unique leading eigenvalue la=4 with zero
amplitude. Notice that the transfer matrix is not diagonal for q=2: there is
a 2×2 nontrivial Jordan block corresponding to l=0 and whose contri-
bution to the partition function is zero for all n. The amplitude corre-
sponding to the other l=0 eigenvalue is 2; we are therefore in Case 3
described in Section 2. Finally, the fourth real zero converges exponentially
fast to B5 (see Table I).

Please note that for this strip there is a vanishing subdominant ampli-
tude at q=Bk for a Beraha number k greater than m+1 (namely, B6=3).
As we shall see, this occurs frequently for the triangular lattice, and
contrasts with the behavior observed for the square lattice. (16, 17)

3.4. Lx = 5F

The transfer matrix is nine-dimensional; it can be found in the
Mathematica file transfer3.m available as part of the electronic
version of this paper in the cond-mat archive. This strip has been pre-
viously studied by Chang and Shrock; (44) but they did not compute the
limiting curve.

The limiting curve B is connected (see Fig. 4). It crosses the real axis
at q0=3. There are six endpoints:

q % 0.5586170364±1.2816149610 i (3.15a)

q % 3.0474871745±0.8171660680 i (3.15b)

q % 3.7782975917±0.5699779858 i. (3.15c)

The topology of the limiting curve is rather involved. It has 12 T points:
q % 3.1572589261±0.7951215102 i, q % 3.1251751109±0.8152460413 i,
q % 3.2093444343±0.9296294663 i, q % 3.3452062643±0.9758086833 i,
q % 3.3248793469±0.9987588766 i, and q % 3.2492362818±1.1185073809 i.
These points define four closed regions. The first five T points are the
vertices of two complex-conjugate regions which look approximately like
rectangular bands. The third, fifth and sixth T points above define two
complex-conjugate triangular-like regions.

The determinant det D(q) is given by

det D(q)=q9(q−1)9 (q−2)66 (q2−3q+1)4 (q−3)61 P(q)2 (3.16)
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where the polynomial P(q) can be found in the Mathematica file
transfer3.m. The factors appearing in det D(q) are the first five
polynomials pk(q) given in ref. 16, Table I; therefore det D(q) vanishes at
q=0, 1, 2, B5, 3. The dominant amplitude vanishes at the first four of them
(but not at q=3), so that q=0, 1, 2, B5 are isolated limiting points. All of
the zeros of P(q) correspond to the vanishing of subdominant amplitudes
only, so none of them is an isolated limiting point.

The first two real zeros q=0, 1 are trivial ones. At q=2 there are two
nonzero eigenvalues with zero amplitudes and seven zero eigenvalues. The
transfer matrix is not diagonalizable: there are two Jordan blocks of
dimension 3 and 2, respectively, associated to the eigenvalue l=0. The
contribution of these blocks to the partition function vanishes for all n. In
addition, the amplitude corresponding to the other two zero eigenvalues
are 0 and 2; we are therefore in Case 3 described in Section 2. The fourth
real zero converges exponentially fast to the value q=B5 (see Table I); and
the fifth real zero converges at an approximate 1/n rate to the value q0=3.
This agrees with the fact that q=3 is a regular limiting point and not an
isolated limiting point.

Fig. 4. Zeros of the partition function of the q-state Potts antiferromagnet on the triangular
lattices 5F×25F (squares), 5F×50F (circles), and 5F×.F (solid line). The isolated limiting
points are denoted by a × .
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3.5. Lx = 6F

The transfer matrix is 21-dimensional; it can be found in the Mathe-
matica file transfer3.m.

The limiting curve B is connected (see Fig. 5). It crosses the real axis
at q0 % 3.1609256737. There are six endpoints:

q % 0.3796307748±1.2450702104 i (3.17a)

q % 2.9641235697±1.1179839989 i (3.17b)

q % 3.8664092416±0.5329463088 i. (3.17c)

There are four T points at q % 3.3081144403±1.2171494282 i, and q %
3.5005856709±0.9442298756 i.

The determinant det D(q) is given by

det D(q)=q21(q−1)21 (q−2)360 (q2−3q+1)13 (q−3)503

×(q3−5q2+6q−1) P(q)2 (3.18)

where the polynomial P(q) can be found in the Mathematica file
transfer3.m. The factors appearing in det D(q) are the first six

Fig. 5. Zeros of the partition function of the q-state Potts antiferromagnet on the triangular
lattices 6F×30F (squares), 6F×60F (circles), and 6F×.F (solid line). The isolated limiting
points are denoted by a × .
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polynomials pk(q) given in ref. 16, Table I. Thus, det D(q) vanishes at
q=0, 1, 2, B5, 3, B7. The dominant amplitude vanishes at the first five of
them (but not at B7), so that q=0, 1, 2, B5, 3 are isolated limiting points.
All of the zeros of P(q) correspond to the vanishing of subdominant
amplitudes only, so none of them is an isolated limiting point.

The first two real zeros q=0, 1 are trivial ones. At q=2 we get six
nonzero eigenvalues with zero amplitudes and 15 zero eigenvalues. We find
again that the transfer matrix is not diagonalizable for q=2: there are five
nontrivial Jordan blocks (one of dimension 3 and four of dimension 2)
corresponding to the eigenvalue l=0, and whose contribution to the par-
tition function always vanishes. The amplitudes of the other four zero
eigenvalues are (0, 0, 0, 2). This combination seems to be the generic case
for free boundary conditions: all amplitudes vanish except one correspond-
ing to a zero eigenvalue. When the transfer matrix is not diagonalizable,
then the nontrivial Jordan blocks correspond to l=0 and their contribu-
tion is always zero. The fourth and fifth real zeros converge exponentially
fast to the values q=B5 and q=3, respectively (see Table I); the sixth real
zero converges at an approximate 1/n rate to the value q0 % 3.1609256737.

3.6. Lx = 7F

The transfer matrix is 51-dimensional; it can be found in the Mathe-
matica file transfer3.m. In this case we have been unable to compute
symbolically the resultant, hence the computation of the limiting curve has
been performed using the direct-search method.

The limiting curve B is connected (see Fig. 6). It crosses the real axis
at q0 % 3.2764013231. There are six endpoints:

q % 0.250538±1.196864 i (3.19a)

q % 3.925804±0.496672 i (3.19b)

q % 2.878928±1.343851 i. (3.19c)

There are four T points at q % 3.6146786603±0.9081562491 i and q %
3.2704141478±1.5194310419 i.

We have been unable to compute the determinant det D(q). However,
we computed the amplitudes numerically at each of the Beraha numbers Bn
up to B50 and determined in particular whether it is an isolated limiting
point or not. As always, q=0, 1 are trivial isolated limiting points where
all the amplitudes vanish. The dominant amplitude also vanishes at
q=2, B5, 3, B7, so they are isolated limiting points too. Finally, a subdo-
minant amplitude vanishes at q=B8.
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Table II. Real Zeros of the Chromatic Polynomials of Finite Triangular-Lattice Strips

with Free Boundary Conditions in Both Directions, to 12 Decimal Placesa

Lattice 4th Zero 5th Zero 6th Zero 7th Zero

7F×7F 2.618033988750 2.978584823651

7F×14F 2.618033988750 3.000000029690 3.160410975706

7F×21F 2.618033988750 3.000000000000

7F×28F 2.618033988750 3.000000000000 3.218685236695

7F×35F 2.618033988750 3.000000000000

7F×42F 2.618033988750 3.000000000000 3.236121891966

7F×49F 2.618033988750 3.000000000000

7F×56F 2.618033988750 3.000000000000 3.243833695579

7F×63F 2.618033988750 3.000000000000

7F×70F 2.618033988750 3.000000000000 3.246633282347

7F×77F 2.618033988750 3.000000000000 3.247059872523 3.254369173708

7F×84F 2.618033988750 3.000000000000 3.246965843358

7F×91F 2.618033988750 3.000000000000 3.246982133140 3.258435734303

8F×8F 2.618033988750 3.000359693703 3.095706393163

8F×16F 2.618033988750 3.000000000000 3.229632685380

8F×24F 2.618033988750 3.000000000000 3.246928323759

8F×32F 2.618033988750 3.000000000000 3.246979586275

8F×40F 2.618033988750 3.000000000000 3.246979603712

8F×48F 2.618033988750 3.000000000000 3.246979603717

8F×56F 2.618033988750 3.000000000000 3.246979603717

8F×64F 2.618033988750 3.000000000000 3.246979603717

8F×72F 2.618033988750 3.000000000000 3.246979603717

8F×80F 2.618033988750 3.000000000000 3.246979603717

8F×88F 2.618033988750 3.000000000000 3.246979603717

8F×96F 2.618033988750 3.000000000000 3.246979603717

9F×9F 2.618033988750 2.999999518372

9F×18F 2.618033988750 3.000000000000 3.246969773686

9F×27F 2.618033988750 3.000000000000 3.246979603720 3.342943823308

9F×36F 2.618033988750 3.000000000000 3.246979603717

9F×45F 2.618033988750 3.000000000000 3.246979603717 3.374646284957

9F×54F 2.618033988750 3.000000000000 3.246979603717

9F×63F 2.618033988750 3.000000000000 3.246979603717 3.387946181123

9F×72F 2.618033988750 3.000000000000 3.246979603717

9F×81F 2.618033988750 3.000000000000 3.246979603717 3.395349738491

9F×90F 2.618033988750 3.000000000000 3.246979603717

Beraha 2.618033988750 3 3.246979603717 3.414213562373

a We use the same notation as in Table I.
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Fig. 6. Zeros of the partition function of the q-state Potts antiferromagnet on the triangular
lattices 7F×35F (squares), 7F×70F (circles), and 7F×.F (solid line). The isolated limiting
points are denoted by a × .

The first two real zeros q=0, 1 are trivial ones. At q=2, all amplitu-
des vanish except one corresponding to a zero eigenvalue. In particular,
there are 12 nonzero eigenvalues with zero amplitudes, 8 zero eigenvalues
with zero amplitudes, and one zero eigenvalue with nonzero amplitude.
We also find 12 nontrivial Jordan blocks corresponding to l=0,
whose contribution to the partition function is always zero. The fourth,
fifth and sixth real zeros converge exponentially fast to the values B5, 3,
and B7, respectively (see Table II); however, the convergence to
B7 % 3.246979603717 is slowed by its nearness to the regular limiting point
q0 % 3.2764013231. For lengths n N 77, a seventh real zero appears: it con-
verges (at an approximate 1/n rate) to q0.

3.7. Lx = 8F

The transfer matrix is 127-dimensional; it can be found in the
Mathematica file transfer3.m. Again we have used the direct-search
method to locate the points of the limiting curve B.
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Fig. 7. Zeros of the partition function of the q-state Potts antiferromagnet on the triangular
lattices 8F×40F (squares), 8F×80F (circles), and 8F×.F (solid line). The isolated limiting
points are denoted by a × .

The limiting curve B is connected (see Fig. 7). It crosses the real axis
at q0 % 3.3610599515. There are six endpoints:

q % 0.154432±1.146669 i (3.20a)

q % 2.793496±1.521468 i (3.20b)

q % 3.967566±0.463648 i. (3.20c)

There are four T points at q % 3.2555859898±1.7000353877 i and q %
3.6703287722±0.8845072864 i.

We were unable to compute the determinant det D(q). However, we
computed the amplitudes numerically at each of the Beraha numbers Bn up
to B50 and determined in particular whether it is an isolated limiting point
or not. As always, q=0, 1 are trivial isolated limiting points where all the
amplitudes vanish. The dominant amplitude vanishes also at q=
2, B5, 3, B7, so they are isolated limiting points too. Finally, some sub-
dominant amplitudes vanish at q=B8, B9; they are not isolated limiting
points.

The first two real zeros q=0, 1 are trivial ones. At the third real zero
q=2, all amplitudes vanish except one corresponding to a zero eigenvalue.
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At q=2 the transfer matrix is not diagonalizable: we find 30 nontrivial
Jordan blocks corresponding to l=0, but their contribution to the parti-
tion function vanishes for all n \ 1. We also get 33 nonzero eigenvalues
with zero amplitudes, 20 zero eigenvalues with zero amplitudes, and one
zero eigenvalue with nonzero amplitude. The fourth, fifth and sixth real
zeros converge exponentially fast to the values B5, 3, and B7, respectively
(see Table II). We also expect a seventh real zero converging (at an
approximate 1/n rate) to q0 % 3.3610599515. Such zero does not appear up
to lengths n=96 (see Table II). We would need to go to very large n to
observe this additional zero.

3.8. Lx = 9F

The transfer matrix is 323-dimensional; it can be found in the
Mathematica file transfer3.m. The size of this transfer matrix pre-
vented us from computing the limiting curve B. However, we were able to
compute the point where the limiting curve crosses the real axis: it is
q0 % 3.4251304673. In Fig. 8 we show the zeros of Z for the finite lattices
9F×45F and 9F×90F .

Fig. 8. Zeros of the partition function of the q-state Potts antiferromagnet on the triangular
lattices 9F×45F (squares) and 9F×90F (circles). The isolated limiting points are denoted by
a × .
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The first two real zeros q=0, 1 are trivial ones. We have checked
numerically that the dominant amplitude vanishes at q=2, B5, 3, B7, B8
(and at no other Beraha numbers up to B50); these are therefore isolated
limiting points. By inspection of Fig. 8 we do not find any candidate for a
non-Beraha real isolated limiting point or for a complex isolated limiting
point. A subdominant amplitude vanishes for q=B9 and B10.

At q=2 the transfer matrix is not diagonalizable: we find 76 nontri-
vial Jordan blocks (up to dimension 5×5) corresponding to l=0; none of
these blocks contribute to the partition function for any n \ 1. We also get
74 nonzero eigenvalues with zero amplitudes, 50 zero eigenvalues with zero
amplitudes, and one zero eigenvalue with nonzero amplitude. The fourth,
fifth, and sixth real zeros converge exponentially fast to the values B5, 3,
and B7, respectively (see Table II). We expect that the seventh real zero will
converge exponentially fast to B8=2+`2 and that there will be (for large
enough length n) an additional real zero that will eventually converge to
the value q % 3.4251304673 > B8 at an approximate 1/n rate. However, we
would probably need to go to very large lengths n in order to observe this
behavior.

4. NUMERICAL RESULTS FOR THE TRIANGULAR-LATTICE

CHROMATIC POLYNOMIAL:

CYLINDRICAL BOUNDARY CONDITIONS

We have also computed the transfer matrix T(mP) and the limiting
curves B for triangular-lattice strips of widths 2 [ m — Lx [ 12 with cylin-
drical boundary conditions, i.e., periodic b.c. in the transverse direction
and free b.c. in the longitudinal direction.

The partition function can be written analogously to (3.3) as

Z(mP×nF)=uTT(mP)n−1 wid (4.1)

where T(mP)=HVH. (See ref. 16, Section 3.1 for some remarks about the
actual computation of this transfer matrix.) Since T(mP) commutes with
translations (due to the periodic b.c.) and the vectors u and wid are trans-
lation-invariant, we can restrict attention to the translation-invariant sub-
space. The dimension of T(mP) is therefore given by the number of equiva-
lence classes modulo translation of non-crossing non-nearest-neighbor
partitions. This number is denoted by TriCyl(m) in ref. 16, Table 2. A
general analytic expression for TriCyl(m) is not known, although such a
formula has been obtained for prime values of m (ref. 53, Theorem 3).
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We have checked our results for widths 2 [ mP [ 12 and lengths
nF=2, 3, 4 by comparing to the results of Beraha–Kahane–Weiss (22)

(resp. Chang–Shrock (44)) for width nF=2 (resp. nF=3, 4) and length mP
(i.e., cyclic boundary conditions), using the trivial identity

Z(mP×nF)=Z(nF×mP). (4.2)

This is a highly non-trivial check of the correctness of our results.
The triangular lattice with cylindrical boundary conditions possesses a

curious reflection symmetry that we shall now explain. Note first that the
triangular lattice is not invariant under reflection in the transverse direc-
tion,10 since reflection changes the direction of the diagonal bonds.

10 More precisely, if the strip width is even, one can choose to reflect either through a pair of
lattice sites or through a pair of bisectors (sites with half-integer coordinates); the two
choices differ by a subsequent translation. If the strip width is odd, then every reflection axis
passes through one lattice site and one bisector.

Nevertheless, in the translation-invariant subspace the transfer matrix does
commute with reflection, because by translating the upper row (of a pair of
rows) by one unit, one can change |{•

• •
into z|

•
•
•
, thereby converting the

triangular lattice into a reflected triangular lattice! Because the transfer
matrix (in the translation-invariant subspace) commutes with reflection, we
can pass to a new basis consisting of connectivities that are either even or
odd under reflection.11 In this new basis, the transfer matrix T(mP) is block-

11 Let us call {vj}
M
j=1 the connectivity basis in the translation-invariant subspace. Some of

these basis elements are invariant under reflection; the rest can be grouped into pairs (va, vb)
that map into each other under reflection. A basis for the reflection-even (i.e., reflection-
invariant) subspace is then given by the basis elements in the first set together with the
combinations va+vb from the second set. A basis for the reflection-odd subspace is given by
the combinations va−vb from the second set.

diagonal:

T(mP)=RT+(mP) 0
0 T−(mP)

S , (4.3)

where T+ (resp. T− ) corresponds to the reflection-even (resp. reflection-
odd) subspace. Furthermore, the reflection-odd components of the start
vector wid=Hvid are identically zero, since both vid and H are manifestly
reflection-invariant. Likewise, the reflection-odd components of the final
vector u are identically zero, since the definition of u involves only H and
not V. Therefore (for either of these two reasons), the amplitudes ak(q)
corresponding to the reflection-odd subspace are all identically vanishing;
these eigenvalues make no contribution whatsoever to the partition func-
tion. It follows that we can work entirely within the reflection-invariant
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subspace, which has dimension SqCyl(m) (see ref. 16, Table 2). For strip
widths m \ 8, SqCyl(m) is strictly smaller than TriCyl(m), so that the
matrix T− is nontrivial.

4.1. Lx = 2P

This case is trivial, as the transfer matrix is one-dimensional:

Z(2P×nF)=q(q−1)[(q−2)(q−3)]n−1 . (4.4)

Please note that the triangular-lattice strip 2P×nF is not equivalent to the
strip 2F×nF for any length n \ 2.

Since there is only one eigenvalue, there is obviously no crossing,
hence B=”. However, there are zeros for all n at q=0, 1 and for n \ 2 at
q=2, 3.

4.2. Lx = 3P

This case is also trivial, as the transfer matrix is again one-dimen-
sional:

Z(3P×nF)=q(q−1)(q−2)(q3−9q2+29q−32)n−1 . (4.5)

Again B=”, and the amplitude vanishes at q=0, 1, 2 (which are the first
three Beraha numbers). For n \ 2 there are additional fixed zeros at
q % 2.5466023485 and q % 3.2266988258±1.4677115087 i, where the
eigenvalue vanishes. This strip was studied by Roček et al. (41)

4.3. Lx = 4P

The transfer matrix is two-dimensional. In the basis P={1, d13+d24}
it can be written as

T(4P)=R
q4−12q3+58q2−135q+126 2(q3−10q2+33q−36)

−2(q2−7q+12) 2(q2−6q+9)
S (4.6)

and the partition function is equal to

Z(4P×nF)=q(q−1) R
q2−3q+3
2(q−1)
ST ·T(4P)n−1 ·R

1
0
S . (4.7)
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Fig. 9. Zeros of the partition function of the q-state Potts antiferromagnet on the triangular
lattices 4P×20F (squares), 4P×40F (circles), and 4P×.F (solid line). The isolated limiting
points are denoted by a × .

The limiting curve B (see Fig. 9) contains three pieces: two complex-
conjugate arcs and a self-conjugate loop. In addition, at the point q=3
both eigenvalues vanish simultaneously (i.e., the transfer matrix T(4P)
itself vanishes); this is a special (degenerate) species of isolated limiting
point. (27) (One of the amplitudes does not vanish at q=3, but that is
irrelevant.) The self-conjugate loop-like component crosses the real axis at
q0 % 3.4814056002 and q=4. There are four endpoints:

q % 1.3705340683±2.7508526144 i (4.8a)

q % 3.6294659317±0.6958422780 i. (4.8b)

This limiting curve was first obtained in the pioneering paper of Beraha
and Kahane (21) (see also ref. 41). They drew the important conclusion that
q=4 is a limiting point of (complex) chromatic roots for the sequence
4P×nF of planar graphs—hence the wonderful title of their paper, ‘‘Is the
Four-Color Conjecture Almost False?’’12

12 Ironically, by the time that this article was published, the Four-Color Conjecture had
become the Four-Color Theorem. The Beraha–Kahane article was submitted in 1976 but
not published until 1979.
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Table III. Real Zeros of the Chromatic Polynomials of Finite Triangular-Lattice Strips

with Periodic Boundary Conditions in the Transverse Direction and Free Boundary

Conditions in the Longitudinal Direction, to 12 Decimal Placesa

Lattice 4th Zero 5th Zero 6th Zero 7th Zero 8th Zero

4P×4F 2.617986010522 3 3.465246100723
4P×8F 2.618033988740 3 3.475055224065
4P×12F 2.618033988750 3 3.477452996799
4P×16F 2.618033988750 3 3.478536268722
4P×20F 2.618033988750 3 3.479153472532
4P×24F 2.618033988750 3 3.479552148708
4P×28F 2.618033988750 3 3.479830901859
4P×32F 2.618033988750 3 3.480036768366
4P×36F 2.618033988750 3 3.480195030232
4P×40F 2.618033988750 3 3.480320488501

5P×5F 2.618033990394 3
5P×10F 2.618033988750 3 3.196843987850
5P×15F 2.618033988750 3
5P×20F 2.618033988750 3 3.202699178454
5P×25F 2.618033988750 3
5P×30F 2.618033988750 3 3.204333275156
5P×35F 2.618033988750 3
5P×40F 2.618033988750 3 3.205100311429
5P×45F 2.618033988750 3
5P×50F 2.618033988750 3 3.205545558020

6P×6F 2.618033988750 3.001033705947 3.125892136302
6P×12F 2.618033988750 3.000000003803 3.198900652620
6P×18F 2.618033988750 3.000000000000 3.217111179820
6P×24F 2.618033988750 3.000000000000 3.225649637432
6P×30F 2.618033988750 3.000000000000 3.230657835149
6P×36F 2.618033988750 3.000000000000 3.233968503481
6P×42F 2.618033988750 3.000000000000 3.236327213212
6P×48F 2.618033988750 3.000000000000 3.238096251767
6P×54F 2.618033988750 3.000000000000 3.239473538415
6P×60F 2.618033988750 3.000000000000 3.240576619481
6P×66F 2.618033988750 3.000000000000 3.241479828709
6P×72F 2.618033988750 3.000000000000 3.242232528364
6P×78F 2.618033988750 3.000000000000 3.242868805497
6P×84F 2.618033988750 3.000000000000 3.243412961909
6P×90F 2.618033988750 3.000000000000 3.243882786313

7P×7F 2.618033988750 3 3.247001348628 3.404690481534
7P×14F 2.618033988750 3 3.246979603718 3.414217072295 3.458917430738
7P×21F 2.618033988750 3 3.246979603717 3.414213561735
7P×28F 2.618033988750 3 3.246979603717 3.414213562373 3.470544903913
7P×35F 2.618033988750 3 3.246979603717 3.414213562373
7P×42F 2.618033988750 3 3.246979603717 3.414213562373 3.473634831556
7P×49F 2.618033988750 3 3.246979603717 3.414213562373
7P×56F 2.618033988750 3 3.246979603717 3.414213562373 3.475070205361
7P×63F 2.618033988750 3 3.246979603717 3.414213562373
7P×70F 2.618033988750 3 3.246979603717 3.414213562373 3.475899672990

a A blank means that the zero in question is absent. The first three real zeros q=0, 1, 2 are
exact on all lattices. ‘‘Beraha’’ indicates the Beraha numbers B5=(3+`5 )/2, B6=3, B7,
B8=2+`2, and B9.
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Table III. (Continued)

Lattice 4th Zero 5th Zero 6th Zero 7th Zero 8th Zero

8P×8F 2.618033988750 3 3.246979601854
8P×16F 2.618033988750 3 3.246979603717 3.414214415195 3.472683999084
8P×24F 2.618033988750 3 3.246979603717 3.414213562387 3.488644630018
8P×32F 2.618033988750 3 3.246979603717 3.414213562373 3.495735217349
8P×40F 2.618033988750 3 3.246979603717 3.414213562373 3.499773262291
8P×48F 2.618033988750 3 3.246979603717 3.414213562373 3.502387969424
8P×56F 2.618033988750 3 3.246979603717 3.414213562373 3.504221641913
8P×64F 2.618033988750 3 3.246979603717 3.414213562373 3.505579831565
8P×72F 2.618033988750 3 3.246979603717 3.414213562373 3.506626776159
8P×80F 2.618033988750 3 3.246979603717 3.414213562373 3.507458740757

Beraha 2.618033988750 3 3.246979603717 3.414213562373 3.532088886238

The determinant det D(q) has the form

det D(q)=8q2(q−1)2 (q−2)(q2−3q+1)(q−3)2 (q−4)2. (4.9)

We recognize the first five minimal polynomials pk(q) given in ref. 16,
Table 1. Hence, the determinant vanishes at the first five Beraha numbers
q=0, 1, 2, B5, 3. It also vanishes at q=4, which corresponds to B.. The
dominant amplitude vanishes only at q=0, 1, 2, B5; these values of q cor-
respond to isolated limiting points.

The fixed zeros at q=0, 1 are trivial ones. At the fixed zero q=2,
there is one nonzero eigenvalue (la=10) with a vanishing amplitude and
one zero eigenvalue with a nonvanishing amplitude (a=2); we are there-
fore in Case 3 described in Section 2. The fourth real zero converges expo-
nentially fast to B5 (see Table III), in agreement with the fact that this is an
isolated limiting point. The fifth real zero, at q=3, is a fixed zero where
both eigenvalues vanish (one of the amplitudes is 0 and the other is 18); we
are therefore on Case 2 described in Section 2. The fact that q=3 is a fixed
zero is due to the width not being a multiple of 3. Finally, q=4 is a cross-
ing point where both eigenvalues take the value l=2 and one of the
amplitudes vanishes. The sixth real zero in Table III converges at an
approximate 1/n rate to the value q0 % 3.4814056002.

For this strip there is a vanishing subdominant amplitude at
q=B6=3, which is greater than Bm+1=B5, in contrast with the behavior
observed for the square lattice. (16, 17)

948 Jacobsen et al.



4.4. Lx = 5P

The transfer matrix is two-dimensional. In the basis P=
{1, d13+perm.} it can be written as

T(5P)=R
T11 5(q4−14q3+76q2−187q+174)

−q3+11q2−43q+58 3q3−35q2+132q−162
S (4.10)

where

T11=q5−15q4+95q3−320q2+579q−452 , (4.11)

and the partition function is equal to

Z(5P×nF)=q(q−1)(q−2) R
q2−2q+2
5(q−1)
ST ·T(5P)n−1 ·R

1
0
S . (4.12)

The limiting curve B (see Fig. 10) contains three disconnected pieces:
two complex-conjugate arcs and a self-conjugate loop-like arc. This latter piece

Fig. 10. Zeros of the partition function of the q-state Potts antiferromagnet on the trian-
gular lattices 5P×25F (squares), 5P×50F (circles), and 5P×.F (solid line). The isolated limit-
ing points are denoted by a × .
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crosses the real axis at q0 % 3.2072219810 and at q % 3.2847747616. There
are four endpoints:

q % 0.4772525688±2.5694937945 i (4.13a)

q % 3.5227474312±0.1876729035 i. (4.13b)

The limiting curve was first obtained in ref. 44.13

13 Two decades earlier, Beraha, Kahane, and Weiss (22) computed the transfer matrix and
reported the crossings of the limiting curve B with the real axis. But they did not show a
plot of the limiting curve.

The determinant det D(q) has the form

det D(q)=5q2(q−1)2 (q−2)2 (q2−3q+1)(q−3)

×(q3−11q2+43q−58)2. (4.14)

We recognize the first five minimal polynomials pk(q) given in ref. 16,
Table 1. Hence, the determinant vanishes at the first five Beraha numbers
q=0, 1, 2, B5, 3. Furthermore, the dominant amplitude vanishes at all
these points; hence they are isolated limiting points. The last factor of the
determinant does not provide additional isolated limiting points.

The fixed zeros at q=0, 1, 2 are trivial ones where all amplitudes
vanish due to the prefactor q(q−1)(q−2) in (4.12). The fourth real zero
converges exponentially fast to B5 (see Table III). The fifth real zero, at
q=3, is a fixed zero where there is one nonzero eigenvalue (la=−2) with
a vanishing amplitude and one zero eigenvalue with a nonvanishing ampli-
tude (a=30); we are therefore in Case 3 described in Section 2. The fact
that q=3 is a fixed zero is due to the width not being a multiple of 3.
Finally, the sixth real zero in Table III converges at an approximate 1/n
rate to the value q0 % 3.2072219810.

4.5. Lx = 6P

The transfer matrix is five-dimensional; it can be found in the
Mathematica file transfer3.m. This strip has been previously studied
by Chang and Shrock; (44) but they did not compute the limiting curve.
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Fig. 11. Zeros of the partition function of the q-state Potts antiferromagnet on the trian-
gular lattices 6P×30F (squares), 6P×60F (circles), and 6P×.F (solid line). The isolated limiting
points are denoted by a × .

The limiting curve B is connected (see Fig. 11). It crosses the real axis
at q0 % 3.2524186216. There are four endpoints:

q % 0.0207708231±2.2756742729 i (4.15a)

q % 4.2838551928±0.6111544521 i. (4.15b)

There are T points at q % 3.9766954928±0.9167681670 i.
The determinant det D(q) has the form

det D(q)=1769472q5(q−1)5 (q−2)6 (q2−3q+1)3 (q−3)15

×(q3−5q2+6q−1)(q2−5q+5)2 (q−4)8 P(q)2 (4.16)

where the polynomial P(q) can be found in the file transfer3.m. The
first six factors in (4.16) are the first six minimal polynomials given in
ref. 16, Table 1; hence the determinant vanishes at the first six Beraha
numbers q=0, 1, 2, B5, 3, B7. It also vanishes at the Beraha number B10,
whose minimal polynomial is q2−5q+5, and at q=4. The dominant
amplitude vanishes only at the first six Beraha numbers, so these values are
the only isolated limiting points. The polynomial P(q) does not provide
additional isolated limiting points.
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The first two zeros q=0, 1 are trivial ones. At q=2 we have three
nonzero eigenvalues with vanishing amplitudes, one zero eigenvalue with
zero amplitude, and one zero eigenvalue with nonzero amplitude; we
therefore fall in Case 3 of Section 2. The fourth and fifth real zeros con-
verge exponentially fast to q=B5, 3 (see Table III). The next Beraha
number B7 % 3.2469796037 is very close to the value q0 % 3.2524186216
where the limiting curve B crosses the real axis. This explains why the
convergence rate to the sixth real zero in Table III is not as fast as expected
(empirically the convergence is roughly ’ n−1.9); but we expect that it will
be ultimately exponential (for very large n). We also expect a seventh real
zero for large enough n; this zero is expected to converge (at an approxi-
mate 1/n rate) to the value q0 % 3.2524186216. We would need to go to
very large n to observe this additional zero.

Finally, for this strip there is a vanishing subdominant amplitude at
q=B10, which is greater than Bm+1=B7, in contrast with the behavior
observed for the square lattice. (16, 17)

4.6. Lx = 7P

The transfer matrix is six-dimensional; it can be found in the Mathe-
matica file transfer3.m.

The limiting curve B is connected (see Fig. 12). It crosses the real axis
at q0 % 3.4790022937 and q % 3.6798199576. It enters the half-plane
Re(q) < 0, and there are four endpoints

q % −0.2279183274±2.0134503491 i (4.17a)

q % 3.9930118897±0.6273386181 i. (4.17b)

There are four T points at q % 3.6222949363±0.1398555812 i and q %
3.9816630253±0.8993269516 i. Finally, it is worth noticing that the
limiting curve encloses a small region around 3.479 M Re(q) M 3.680 and
|Im(q)| M 0.14.

The determinant det D(q) has the form

det D(q)=68841472q6(q−1)6 (q−2)6 (q2−3q+1)4

×(q−3)21 (q3−5q2+6q−1)

×(q2−4q+2)(q2−5q+5)2 P(q)2 (4.18)

where the polynomial P(q) can be found in the file transfer3.m. The
first seven factors in (4.18) are precisely the first minimal polynomials given

952 Jacobsen et al.



Fig. 12. Zeros of the partition function of the q-state Potts antiferromagnet on the trian-
gular lattices 7P×35F (squares), 7P×70F (circles), and 7P×.F (solid line). The isolated limiting
points are denoted by a × .

in ref. 16, Table 1. The next one (q2−5q+5) is the tenth minimal polyno-
mial in ref. 16, Table 1. Hence, the determinant det D(q) vanishes at the
Beraha numbers q=0, 1, 2, B5, 3, B7, B8, B10. However, the dominant
amplitude vanishes only at the first seven Beraha numbers q=
0, 1, 2, B5, 3, B7, B8; these values are the only isolated limiting points for
this strip. The polynomial P(q) does not provide additional isolated
limiting points.

The first three zeros q=0, 1, 2 are trivial ones. The fifth real zero, at
q=3, is a fixed zero where there are 2 nonzero eigenvalues with zero
amplitudes, one zero eigenvalue with zero amplitude, and 3 zero eigen-
values with nonzero amplitudes. The fourth, sixth and seventh real zeros
converge exponentially fast to q=B5, B7, B8 (see Table III). The eighth real
zero seems to converge at an approximate 1/n rate to the value
q0 % 3.4790022937.

In contrast with the behavior observed for the square lattice, we find a
vanishing subdominant amplitude at q=B10, which is greater than
Bm+1=B8.
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4.7. Lx = 8P

The transfer matrix T(8P) is 15-dimensional. As discussed at the
beginning of this section, the transfer matrix can be brought into block-
diagonal form

T(8P)=R
T+(8P) 0
0 T−(8P)

S (4.19)

where the block T+ (resp. T− ) is 14-dimensional (resp. 1-dimensional) and
corresponds to the subspace of reflection-invariant (resp. reflection-odd)
connectivities. Moreover, the amplitude corresponding to the reflection-
odd eigenvalue is identically vanishing; this eigenvalue therefore makes no
contribution to the partition function. The reduced transfer matrix T+(8P)
can be found in the Mathematica file transfer3.m. The one-dimen-
sional block is T−(8P)=−q3+6q2−8q−3.

There are, however, two further curious features for which we have,
as yet, no explanation. First of all, we find another eigenvalue l=
−q3+6q2−8q−3, this time inside the reflection-invariant subspace.
Secondly (and even more mysteriously), this eigenvalue too has an identi-
cally vanishing amplitude. (We have checked this fact numerically.) The
pair of eigenvalues l=−q3+6q2−8q−3 can be observed explicitly by
forming the characteristic polynomial of the transfer matrix, which can be
factored as14

14 In most of the previously studied cases with cylindrical boundary conditions (namely,
triangular-lattice strips of widths 4P [ m [ 7P and square-lattice strips of widths
4P [ m [ 9P), the characteristic polynomial associated to the transfer matrix cannot be
factored as in (4.20). In other words, none of the eigenvalues l is a polynomial in q. The
cases with m [ 3P are trivial as the transfer matrix is one-dimensional: there is a single
eigenvalue, which is indeed a polynomial in q.

det[T(8P)−l1]=(l+q3−6q2+8q+3)2 Q2(q, l) (4.20)

where Q2(q, l) is a polynomial in q and l (it is obviously of degree 13 in l).
Unfortunately, we have been unable to find a further change of basis to
make T+(8P) block-diagonal and thereby bring out explicitly the eigenvalue
l=−q3+6q2−8q−3 lying inside that subspace.

In order to compute the limiting curve B we have mainly used
the resultant method. The existence of a double eigenvalue l=
−q3+6q2−8q−3 in the full transfer matrix T(8P) makes the resultant
identically zero for h=0. However, this problem does not arise if we
consider the reduced matrix T+(8P). Nevertheless, the existence of an
identically zero amplitude within the reduced subspace makes the compu-
tation of the limiting curve B not completely straightforward, as only those
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Fig. 13. Zeros of the partition function of the q-state Potts antiferromagnet on the trian-
gular lattices 8P×40F (squares), 8P×80F (circles), and 8P×.F (solid line). The isolated limit-
ing points are denoted by a × .

eigenvalues with non-identically-vanishing amplitudes should be taken into
account in computing B. A simple solution is devised by noting that the
resultant method uses only the characteristic polynomial of the transfer
matrix. Therefore, we can drop the factor (l+q3−6q2+8q+3)2 in (4.20) and
compute the resultant using the polynomialQ2(q, l). In this way, we obtain a
nonzero resultant, into which the zero-amplitude eigenvalues do not enter.15

15 We also checked—though this is not relevant to computing B for the boundary conditions
being considered here—that the zero-amplitude eigenvalue l=−q3+6q2−8q−3 is not domi-
nant at any of the zeros of our resultant. If the zero-amplitude eigenvalue l=−q3+6q2−8q−3
were in fact dominant somewhere in the complex q-plane, then by modifying the top and
bottom endgraphs (as shown in ref. 41) it might be possible to make that eigenvalue (in either
the reflection-even or reflection-odd sector or both) contribute to the chromatic polynomial
and thereby obtain a different limiting curve B for the different choice of endgraphs.

The limiting curve B is connected (see Fig. 13). It crosses the real axis
at q0 % 3.5147694243. It enters the half-plane Re(q) < 0, and there are four
endpoints

q % −0.3713655472±1.7983425919 i (4.21a)

q % 4.0496984440±0.7359317819 i. (4.21b)
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There are cusp-like structures around q % 4.04±0.74 i. A closer look
shows that these structures are in fact T points located at q %
4.0428606488±0.7417105390 i, from which there emerge very short
branches terminating at the endpoints q % 4.0496984440±0.7359317819 i.

We form a matrix D(q) of dimension 13 rather than 15; in this way we
can avoid the two identically vanishing amplitudes.16 Its determinant has

16 If we were to form a 15-dimensional or 14-dimensional matrix D(q), its determinant would
be identically zero. This tells us (in case we did not know it already) that two of the ampli-
tudes are identically zero.

the form

det D(q)=const.×q13(q−1)13 (q−2)24 (q2−3q+1)10 (q−3)191

×(q3−5q2+6q−1)4 (q2−4q+2)(q3−6q2+9q−1)

×(q2−5q+5)14 (q3−7q2+14q−7)2 (q−4)54

×(12q6−196q5+1355q4−5126q3+11337q2−14086q+7755)

×P1(q)2 (4.22)

where the polynomial P1(q) can be found in the file transfer3.m. The
first nine factors in (4.22) are precisely the first minimal polynomials given
in ref. 16, Table 1; therefore, det D(q) vanishes at the Beraha numbers
q=B2,..., B10. The next factor is the square of the polynomial
q3−7q2+14q−7, which is p14(q) (ref. 16, Table 1), so that det D(q) also
vanishes at q=B14. Finally, the determinant also vanishes at q=4=B..
Unlike what we have seen for cylindrical strips of smaller width, in this
case the remaining part of det D(q) is not the square of a polynomial with
integer coefficients; rather, there is the additional degree-6 factor preceding
P1(q)2. The dominant amplitude vanishes only at the first seven Beraha
numbers q=0, 1, 2, B5, 3, B7, B8, so these values are the only isolated
limiting points for this strip. The degree-6 factor and the polynomial P1(q)
do not provide additional isolated limiting points.

The first two zeros q=0, 1 are trivial ones. At q=2, 3, all amplitudes
vanish except for a few corresponding to zero eigenvalues; we are thus in
Case 3 of Section 2. At q=2, there are 10 nonzero eigenvalues with zero
amplitudes, 3 zero eigenvalues with zero amplitudes, and one zero eigen-
value with nonzero amplitude. At q=3 the transfer matrix is not diago-
nalizable: there are 2 nonzero eigenvalues with zero amplitudes, one 2×2
nontrivial Jordan block corresponding to l=0 with no contribution at all
to the partition function for all n, and 10 zero eigenvalues with nonzero
amplitudes. The fourth, sixth and seventh real zeros converge exponentially
fast to q=B5, B7, B8 (see Table III). The eighth real zero seems to converge
at an approximate 1/n rate to the value q0 % 3.5147694243.
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Finally, we find vanishing subdominant amplitudes at q=B10, B14,
which are greater than Bm+1=B9 .

4.8. Lx = 9P

The transfer matrix T(9P) is 28-dimensional. It can be brought into
block-diagonal form

T(9P)=R
T+(9P) 0
0 T−(9P)

S , (4.23)

where the block T+ (resp. T− ) is 22-dimensional (resp. 6-dimensional) and
corresponds to the subspace of reflection-invariant (resp. reflection-odd)
connectivities. Moreover, all the amplitudes corresponding to the reflection-
odd subspace are identically vanishing; this subspace therefore makes no
contribution to the partition function. The reduced transfer matrix T+(9P)
can be found in the Mathematica file transfer3.m.

Mysteriously, all of the eigenvalues in the reflection-odd subspace have
‘‘copies’’ in the reflection-even subspace. This can be seen by computing
the characteristic polynomial associated to the transfer matrix T(9P), which
can be factored as follows:

det[T(9P)−l1]=Q1(q, l)2 Q2(q, l) (4.24)

where Q1(q, l) and Q2(q, l) are polynomials in q and l; here Q1 (resp. Q2)
is of degree 6 (resp. 16) in l. More specifically, Q1 (resp. Q1Q2) is the
characteristic polynomial of T− (resp. T+); the fact that Q1 appears as a
factor in the characteristic polynomial of T+ is direct proof of the just-
mentioned ‘‘copying’’ of eigenvalues. Even more mysteriously, our numer-
ical checks suggest that all the eigenvalues coming from Q1 have identically
zero amplitudes—not only in the reflection-odd subspace (where this is well
understood) but also in the reflection-invariant subspace. We thus find 6
pairs of equal eigenvalues with identically vanishing amplitudes.

In order to be able to use the resultant method in this case, we proceed
as in the previous subsection: we drop the polynomial Q1(q, l)2 (which
contains the zero-amplitude eigenvalues) from the characteristic polyno-
mial associated to T(9P) and compute the resultant with the polynomial
Q2(q, l) (which contains the eigenvalues with nonzero amplitudes).
We have computed the points with h=0 with the resultant method; the
points with other values of h have been computed using the direct-search
method.
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Fig. 14. Zeros of the partition function of the q-state Potts antiferromagnet on the trian-
gular lattices 9P×45F (squares), 9P×90F (circles), and 9P×.F (solid line). The isolated limit-
ing points are denoted by a × .

The limiting curve B is connected (see Fig. 14). It crosses the real axis
at q0 % 3.5270636990. It enters the half-plane Re(q) < 0, and there are four
endpoints

q % −0.4576020413±1.6238415411 i (4.25a)

q % 4.2828643197±0.3823491910 i, (4.25b)

There are T points located at q % 4.0160853030±0.7870153859 i.
We form a matrix D(q) of dimension 16 rather than 28, in order to

avoid the 12 identically zero amplitudes. Its determinant has the form

det D(q)=const×q16(q−1)16 (q−2)16 (q2−3q+1)13 (q−3)173

×(q3−5q2+6q−1)5 (q2−4q+2)4 (q3−6q2+9q−1)

×(q2−5q+5)7 (q3−7q2+14q−7)2 P(q) , (4.26)

where the polynomial P(q) can be found in the file transfer3.m.
We find the same ‘‘Beraha factors’’ as in the triangular-lattice strip of
width 8P (Section 4.7). Thus, det D(q) vanishes at the Beraha numbers
q=B2,..., B10, B14. The polynomial P(q) is not the square of any polyno-
mial with integer coefficients; rather it can be written as P1(q) P2(q)2 where
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P1 and P2 are integer-coefficient polynomials. The dominant amplitude
vanishes only at the first seven Beraha numbers q=0, 1, 2, B5, 3, B7, B8;
thus, these values are the only isolated limiting points for this strip. The
polynomial P(q) does not provide additional isolated limiting points.

The first three zeros q=0, 1, 2 are trivial ones (i.e., all amplitudes
vanish identically). The fourth, fifth, sixth and seventh real zeros converge
exponentially fast to q=B5, 3, B7, B8 (see Table IV). The eighth real
zero seems to converge at an approximate 1/n rate to the value
q0 % 3.5270636990.

We again find a vanishing subdominant amplitude at q=B14, which is
greater than Bm+1=B10.

4.9. Lx = 10P

The transfer matrix T(10P) is 67-dimensional. It can be brought into
block-diagonal form

T(10P)=R
T+(10P) 0
0 T−(10P)

S , (4.27)

where the block T+ (resp. T− ) is 51-dimensional (resp. 16-dimensional) and
corresponds to the subspace of reflection-invariant (resp. reflection-odd)
connectivities. All the amplitudes corresponding to the reflection-odd sub-
space are identically vanishing; this subspace therefore makes no contribu-
tion to the partition function. The reduced transfer matrix T+(10P) can be
found in the Mathematica file transfer3.m.

The characteristic polynomial of the transfer matrix T(10P) obviously
factors as det[T(10P)−l1]=Q1(q, l) Q(q, l), where Q1 (resp. Q) is the
characteristic polynomial of T− (resp. T+). Numerically we have found,
once again, that all the eigenvalues in the reflection-odd subspace have
‘‘copies’’ in the reflection-even subspace. Therefore, the polynomial Q(q, l)
should have Q1(q, l) as a factor, so that

det[T(10P)−l1]=Q1(q, l)2 Q2(q, l) (4.28)

where Q2(q, l) is a polynomial of degree 35 in l. Unfortunately, we have
been unable to compute the characteristic polynomial Q(q, l) of the
reduced transfer matrix T+(10P) and verify the conjectured factorization
(4.28).

Once again, we have found numerically that the ‘‘copied’’ eigenvalues
have identically vanishing amplitudes. We thus find 16 pairs of equal
eigenvalues with identically vanishing amplitudes.
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Fig. 15. Zeros of the partition function of the q-state Potts antiferromagnet on the trian-
gular lattices 10P×50F (squares), 10P×100F (circles), and 10P×.F (solid line). The isolated
limiting points are denoted by a × .

We have used the direct-search method in the computation of B. The
limiting curve B is connected (see Fig. 15). It crosses the real axis at
q0 % 3.6348299654. It enters the half-plane Re(q) < 0, and there are four
endpoints

q % −0.510807±1.481233 i (4.29a)

q % 4.113231±0.492835 i. (4.29b)

There are T points located at q % 4.0632619066±0.8803786140 i.
We have numerically checked that the dominant amplitude vanishes at

the first nine Beraha numbers q=0, 1, 2, B5, 3, B7, B8, B9, B10 (and at no
others); therefore, these values are the only isolated limiting points for this
strip. We have found no evidence of complex isolated limiting points from
the zeros of the finite-length strips.

The first two zeros q=0, 1 are trivial ones. At q=2, 3 we are in Case 3
described in Section 2. At q=2, there are 38 nonzero eigenvalues with zero
amplitudes, 12 zero eigenvalues with zero amplitudes and one zero eigen-
value with a nonzero amplitude. At q=3 the transfer matrix is not diago-
nalizable: we find 4 nonzero eigenvalues with zero amplitudes, one 2×2
nontrivial Jordan block corresponding to l=−3 which does not contribute
to the partition function for any n, 40 zero eigenvalues with nonzero
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amplitudes, and two nontrivial Jordan blocks (of dimensions 3 and 2
respectively) corresponding to l=0. The contribution of these later blocks
is zero except for n=1. The fourth, sixth, seventh, eight and ninth real
zeros converge exponentially fast to q=B5, B7, B8, B9, B10 (see Table IV).
The tenth real zero seems to converge at an approximate 1/n rate to the
value q0 % 3.6348299654.

Finally, we have also checked that there are vanishing amplitudes (in
addition to the trivial 32 identically zero amplitudes) for q=B11, B14,
and B18. In all these cases, the vanishing amplitude corresponds to a sub-
dominant eigenvalue; thus, none of these points is an isolated limiting
point. Please note that the last two values (namely, B14 and B18) are greater
than Bm+1=B11.

4.10. Lx = 11P

The transfer matrix T(11P) is 145-dimensional. It can be brought into
block-diagonal form

T(11P)=R
T+(11P) 0
0 T−(11P)

S , (4.30)

where the block T+ (resp. T− ) is 95-dimensional (resp. 50-dimensional) and
corresponds to the subspace of reflection-invariant (resp. reflection-odd)
connectivities. All the amplitudes corresponding to the reflection-odd sub-
space are identically vanishing; this subspace therefore makes no contribu-
tion to the partition function. The reduced transfer matrix T+(11P) can be
found in the Mathematica file transfer3.m.

The characteristic polynomial of the transfer matrix T(11P) obviously
factors as det[T(11P)−l1]=Q1(q, l) Q(q, l), where Q1 (resp. Q) is the
characteristic polynomial of T− (resp. T+). Numerically we have found,
once again, that all the eigenvalues in the reflection-odd subspace have
‘‘copies’’ in the reflection-even subspace. Therefore, the polynomial Q(q, l)
should have Q1(q, l) as a factor, so that

det[T(11P)−l1]=Q1(q, l)2 Q2(q, l) (4.31)

where Q2(q, l) is a polynomial of degree 45 in l. Unfortunately, we have
been unable to compute the characteristic polynomial Q(q, l) of the reduced
transfer matrix T+(11P) and verify the conjectured factorization (4.31).

Once again, we have found numerically that the ‘‘copied’’ eigenvalues
have identically vanishing amplitudes. We thus find 50 pairs of equal
eigenvalues with identically vanishing amplitudes.

As in the preceding subsection, we used the direct-search method
in the computation of B. This curve crosses the real q-axis at q0 %
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Fig. 16. Zeros of the partition function of the q-state Potts antiferromagnet on the trian-
gular lattices 11P×55F (squares), 11P×110F (circles), and 11P×.F (solid line). The isolated
limiting points are denoted by a × .

3.6441399017 (see Fig. 16). It enters the half-plane Re(q) < 0, and there are
four endpoints

q % −0.543988±1.363241 i (4.32a)

q % 4.156093±0.529420 i. (4.32b)

There are T points located at q % 4.0425923021±0.6927608569 i.
We have numerically checked that the dominant amplitude vanishes at

the first nine Beraha numbers q=0, 1, 2, B5, 3, B7, B8, B9, B10 (and at no
others), so that these values are the only real isolated limiting points for
this strip. We inspected the zeros of the finite-length strips and found no
evidence of complex isolated limiting points.

The first three zeros q=0, 1, 2 are trivial ones, as all amplitude vanish.
At q=3 the transfer matrix is not diagonalizable. There are four nontrivial
Jordan blocks corresponding to four nonzero eigenvalues. Furthermore,
the contribution of these Jordan blocks to the partition function vanishes
for all n \ 1. We also find 8 nonzero eigenvalues with zero amplitudes, 30
zero eigenvalues with nonzero amplitudes, and 30 zero eigenvalues with
zero amplitudes. The fourth, sixth, seventh, eighth and ninth real zeros
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converge exponentially fast to q=B5, B7, B8, B9, B10 (see Table IV). The
tenth real zero seems to converge at an approximate 1/n rate to the value
q0 % 3.6441399017.

Finally, we have also checked that there are vanishing amplitudes
(in addition to the trivial 100 identically zero amplitudes) for q=
B11, B12, B14, B18. In all these cases, the vanishing amplitude is subdominant;
thus, none of these points is an isolated limiting point. Again, the values
B14 and B18 are greater than Bm+1=B12.

4.11. Lx = 12P

The transfer matrix T(12P) is 368-dimensional. It can be brought into
block-diagonal form

T(12P)=R
T+(12P) 0
0 T−(12P)

S , (4.33)

where the block T+ (resp. T− ) is 232-dimensional (resp. 136-dimensional)
and corresponds to the subspace of reflection-invariant (resp. reflection-
odd) connectivities. All the amplitudes corresponding to the reflection-odd
subspace are identically vanishing; this subspace therefore makes no con-
tribution to the partition function. The reduced transfer matrix T+(12P) can
be found in the Mathematica file transfer3.m.

The characteristic polynomial of the transfer matrix T(12P) obviously
factors as det[T(12P)−l1]=Q1(q, l) Q(q, l), where Q1 (resp. Q) is the
characteristic polynomial of T− (resp. T+). Numerically we have found,
once again, that all the eigenvalues in the reflection-odd subspace have
‘‘copies’’ in the reflection-even subspace. Therefore, the polynomial Q(q, l)
should have Q1(q, l) as a factor, so that

det[T(12P)−l1]=Q1(q, l)2 Q2(q, l) (4.34)

where Q2(q, l) is a polynomial of degree 96 in l. Unfortunately, we have
been unable to compute the characteristic polynomial Q(q, l) of the
reduced transfer matrix T+(12P) and verify the conjectured factorization
(4.34).

Once again, we have found numerically that the ‘‘copied’’ eigenvalues
have identically vanishing amplitudes. We thus find 136 pairs of equal
eigenvalues with identically vanishing amplitudes.

Due to the large dimension of the transfer matrix, we have been
unable to compute the limiting curve. However, we have managed using
the direct-search method to compute the point where B crosses the real
q-axis: q0 % 3.6431658979. We have also computed the position of the pair
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Fig. 17. Zeros of the partition function of the q-state Potts antiferromagnet on the trian-
gular lattices 12P×60F (squares) and 12P×120F (circles). The isolated limiting points are
denoted by a × .

of complex-conjugate T points that are obvious in Fig. 16; the result is
q % 4.05713658±0.73432479 i.

We have numerically checked that the dominant amplitude vanishes at
the first nine Beraha numbers q=0, 1, 2, B5, 3, B7, B8, B9, and B10. These
values are the only isolated limiting points for this strip. We have found no
evidence of complex isolated limiting points by inspecting the zeros of the
finite-length strips.

The first two zeros q=0, 1 are trivial ones. At q=2 there are 164
nonzero eigenvalues with zero amplitudes, 2 zero eigenvalues with nonzero
amplitudes, and 66 zero eigenvalues with zero amplitudes. The convergence
to q=B5, 3, B7, B8, B9, B10 is exponentially fast (see Table IV). The tenth
real zero seems to converge at an approximate 1/n rate to the value
q0 % 3.6431658979.

Finally, we have also checked that there are vanishing amplitudes
(in addition to the trivial 272 identically zero amplitudes) for q=
B11, B12, B13, B14, B18, B22. In all these cases, the vanishing amplitude is
subdominant; thus, none of these points is an isolated limiting point.

In this case we find three vanishing subdominant amplitudes (B14, B18,
and B22) that are greater than the value Bm+1=B13.
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5. NUMERICAL RESULTS FOR THE TRIANGULAR-LATTICE

CHROMATIC POLYNOMIAL: ZIG–ZAG BOUNDARY CONDITIONS

Until now, we have built up the triangular lattice by transferring along
a direction that is perpendicular to one of the principal directions of the
lattice. An alternative choice, of course, would be to transfer along a direc-
tion that is parallel to a principal direction. When periodic boundary con-
ditions are imposed across the strip, these two constructions are inequi-
valent: they yield different finite graphs. We shall refer to this alternative
construction, with periodic boundary conditions in the transversal direction
and free boundary conditions in the longitudinal direction, as ‘‘zig–zag’’
boundary conditions, and it will be denoted by the subscript Z. Note that
the lattice width m must be even.

For zig–zag boundary conditions, the transfer matrix is not given by
the formulae of ref. 16. Rather, as is evident from Fig. 1(b), the transfer
matrix now takes the following form

T(mZ)=HVevenHVodd , (5.1)

where Veven (resp. Vodd) is the product of the matrices associated to the
vertical bonds located at even (resp. odd) sites of the lattice. With this
definition, all the formulae applied in the previous sections hold.

Our original motivation for introducing this new construction was the
following: It is clear from Sections 3 and 4 that the limiting curves for the
strips with free and cylindrical boundary conditions differ qualitatively by
the existence of a small additional inward-pointing branch for the case of
free b.c., which is absent for cylindrical b.c. In the limit of infinite width,
one might wonder whether this branch extends to q=2, as the triangular-
lattice Ising model is known to have a zero-temperature critical point. (32)

We found it interesting to examine whether we can recover such a branch
by imposing zig–zag boundary conditions. The answer turns out to be
negative; but it seems to us that zig–zag b.c. are interesting in their own
right, irrespective of this initial motivation.

We have computed the transfer matrix T(mZ) and the limiting curves
B for triangular-lattice strips of even widths 2 [ m — Lx [ 10. It is interest-
ing to note that the trick discussed in ref. 16, (Sections 3.1 and 3.3) for the
standard construction of a cylindrical triangular-lattice strip is not neces-
sary here. On the other hand, the dimension of the transfer matrix T(mZ) is
in general different from TriCyl(m), because the invariances are different:
for zig–zag boundary conditions, the system is invariant under translations
of even (but not odd) length and under reflections.
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5.1. Lx = 2Z

This case is trivial, as the transfer matrix is one-dimensional:

Z(2Z×nF)=q(q−1)(q−2)2(n−1). (5.2)

Please note that the strip 2Z×nF is equivalent to 2F×nF. Since there is only
one eigenvalue, there is obviously no crossing, hence B=”. However,
there are zeros for all n at q=0, 1 and for n \ 2 at q=2.

5.2. Lx = 4Z

The transfer matrix is three-dimensional. In the basis P={1, d13, d24}
it can be written as

T(4Z)=R T11 T12 T13
2q−5 q2−4q+4 1
T31 q2−4q+4 3q2−17q+25

S (5.3)

where

T11=q4−12q3+56q2−121q+101 (5.4a)

T12=q3−8q2+20q−16 (5.4b)

T13=q3−10q2+34q−40 (5.4c)

T31=2q3−17q2+50q−50 (5.4d)

and the partition function is equal to

Z(4P×nZ)=q(q−1) Rq
2−3q+3
q−1
q−1

S
T

·T(4Z)n−1 ·R10
0

S . (5.5)

The limiting curve B (see Fig. 18) contains two complex-conjugate
arcs, which do not cross the real q-axis. There are four endpoints:

q % 2.0991442518±2.5589234827 i (5.6a)

q % 2.7371672817±0.1723332852 i (5.6b)

We have found a complex-conjugate pair of double zeros of the resultant
for h=0 (see ref. 16, Section 4.1.1) at q % 3.7718445063±1.1151425080 i.
At these values the limiting curve appears at first glance to be singular (see
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Fig. 18. Zeros of the partition function of the q-state Potts antiferromagnet on the trian-
gular lattices 4P×20Z (squares), 4P×40Z (circles), and 4P×.Z (solid line). The isolated limiting
points are denoted by a × .

Fig. 18). However, a closer look reveals that this is not the case; in fact, the
limiting curve is perfectly analytic around these two points.17

17 In the notation of ref. 16, Section 4.2, the characteristic polynomial of T(4Z) can be
expanded as

P(l, q)=c(l−l0)2+d(q−q0)2+e(q−q0)(l−l0)+· · ·

around the points q0 % 3.7718445063±1.1151425080 i and the dominant (double) eigen-
value l0=−0.5237532362+4.5580089825 i (the linear terms in l−l0 and q−q0 vanish).
This expansion leads to analytic eigenvalues l± (q) around q=q0 and to an analytic equi-
modular locus around q=q0.

The determinant det D(q) has the form

det D(q)=−q3(q−1)3 (q−2)2 (q2−3q+1)(q−3)2 (2q−5)4

×(q3−10q2+34q−38)2. (5.7)

We recognize the first five minimal polynomials pk(q) given in ref. 16,
Table 1. Hence, the determinant vanishes at the first five Beraha numbers
q=0, 1, 2, B5, 3. The dominant amplitude vanishes at all these points
except at q=3; therefore, q=0, 1, 2, B5 are isolated limiting points. It is
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interesting to note that the dominant amplitude vanishes also at q=5/2, so
that this too is an isolated limiting point. This is the first time we have
found a real isolated limiting point that is not a Beraha number. (For the
square lattice, we did not find any non-Beraha real isolated limiting
point. (16, 17)) There are no additional isolated limiting points coming from
the last factor q3−10q2+34q−38, as the vanishing amplitudes in question
all correspond to subdominant eigenvalues.

The first two real zeros q=0, 1 are trivial as all the amplitudes vanish.
The third real zero q=2 belongs to Case 3 of Section 2: the two nonzero
eigenvalues have zero amplitude, and there is an additional zero eigenvalue
with a nonzero amplitude. Finally, the fourth and fifth real zeros converge
exponentially fast to the values 5/2 and B5, respectively. In summary, we
find five isolated limiting points q=0, 1, 2, 5/2 and B5. This is in agree-
ment with Table V.

Please note that there is a vanishing subdominant amplitude at
q=B6=3. This value is greater than Bm+1=B5, in contrast with the
observed behavior for the square lattice. (16, 17)

5.3. Lx = 6Z

The transfer matrix is seven-dimensional; it can be found in the
Mathematica file transfer3.m.

The limiting curve B is connected (see Fig. 19). It crosses the real axis
at q % 3.1752579126. There are four endpoints:

q % 0.3618461880±2.5093731708 i (5.8a)

q % 4.2589504182±0.7015734543 i. (5.8b)

There are T points at q % 3.8395346820±1.1149959335 i.
The determinant det D(q) has the form

det D(q)=81q7(q−1)7 (q−2)18 (q2−3q+1)4 (q−3)44

×(q3−5q2+6q−1) P(q)2 (5.9)

where the polynomial P(q) can be found in the file transfer3.m. The
first six polynomial are the first six minimal polynomials given in ref. 16,
Table 1; hence the determinant vanishes at the first six Beraha numbers
q=0, 1, 2, B5, 3, B7. The dominant amplitude vanishes at the first five
Beraha numbers q=0, 1, 2, B5, 3 as well as at three of the zeros of P(q),
namely q % 2.7226328355 and q % 3.6696077451±0.9506864736 i. This is
the first triangular-lattice strip where we find complex isolated limiting
points. In the square-lattice case, complex isolated limiting points were
quite common: we found such limiting points for L \ 6 with both free and
cylindrical boundary conditions. (16, 17)
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Fig. 19. Zeros of the partition function of the q-state Potts antiferromagnet on the trian-
gular lattices 6P×30Z (squares), 6P×60Z (circles), and 6P×.Z (solid line). The isolated limiting
points are denoted by a × .

The first two real zeros q=0, 1 are trivial ones. The third real zero
q=2 falls in Case 3 of Section 2: there are four nonzero eigenvalues with
zero amplitudes, two zero eigenvalues with nonzero amplitudes, and one
zero eigenvalue with zero amplitude. The convergence of the fourth, fifth
and sixth real zeros to their corresponding limiting values (namely,
B5, 2.7226328355, and 3) is exponentially fast, as shown in Table V.
Finally, the seventh real zero converges at an approximate 1/n rate to the
value q % 3.1752579126.

In summary, we find six real isolated limiting points at q=
0, 1, 2, B5, 2.7226328355, 3 and B7 (see Table V) and two complex
isolated limiting points at q % 3.6696077451±0.9506864736 i. However,
since the complex isolated limiting points are very near B, it is very diffi-
cult to observe the convergence to them as distinct from the convergence to
B (see Fig. 19).

5.4. Lx = 8Z

The transfer matrix is 24-dimensional; it can be found in the Mathe-
matica file transfer3.m.
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Fig. 20. Zeros of the partition function of the q-state Potts antiferromagnet on the trian-
gular lattices 8P×40Z (squares), 8P×80Z (circles), and 8P×.Z (solid line). The isolated limiting
points are denoted by a × .

The limiting curve B is connected (see Fig. 20). It crosses the real axis
at q % 3.3941047539. There are four endpoints:

q % −0.2143469947±2.0301412598 i (5.10a)

q % 4.2899063418±0.5046183096 i. (5.10b)

There are T points at q % 4.0055796610±0.8830638824 i.
In this case we were unable to compute the determinant det D(q).

However, we checked numerically whether any of the amplitudes vanishes
at the Beraha numbers Bn, and if this occurs, whether the vanishing ampli-
tude is the leading one or not. We have made this check up to n=50. We
have found that at least one amplitude vanishes at the Beraha numbers
q=0, 1, 2, B5, 3, B7, B8, B9. The dominant amplitude vanishes only at the
first six (namely, q=0, 1, 2, B5, 3, B7), so that these latter numbers are
isolated limiting points (see Table V). In Table V we also notice an addi-
tional isolated zero at q % 2.8214204955. We have numerically confirmed
that this point is indeed an isolated limiting point by minimizing the
absolute value of the dominant amplitude aa in a neighborhood of that point.

The first two real zeros q=0, 1 are trivial ones. At q=2, there are 13
nonzero eigenvalues with zero amplitudes, 2 zero eigenvalues with nonzero
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amplitudes, and 9 zero eigenvalues with zero amplitudes. Finally, the other
real zeros in Table V converge exponentially fast to their corresponding
limiting values (namely, B5, 2.8214204955, 3, and B7). We expect, for suffi-
ciently larger lengths n, an additional real zero larger than B7 and converg-
ing to q % 3.3941047539; but we apparently need to go beyond n=80 to see
it. In summary, there are seven real isolated limiting points at q=0, 1, 2,
B5, 2.8214204955, 3, and B7.

By minimizing the absolute value of the dominant amplitude aa, we
have found a pair of complex-conjugate isolated limiting points at q %
3.8327415674±0.73050211595 i (See Fig. 20). Again, we are not sure that
we have found all complex isolated limiting points for this strip.

5.5. Lx = 10Z

The transfer matrix is 87-dimensional; it can be found in the Mathe-
matica file transfer3.m.

In this case we were unable to compute the limiting curve. However,
we were able to compute the value of q where that curve crosses the real
axis: q % 3.5204366907.

Fig. 21. Zeros of the partition function of the q-state Potts antiferromagnet on the trian-
gular lattices 10P×50Z (squares) and 10P×80Z (circles). The isolated limiting points are
denoted by a × .
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The matrix D(q) is too large for us to compute its determinant.
Instead, we have checked numerically the eigenvalues and amplitudes of
the transfer matrix at the Beraha numbers Bn with 2 [ n [ 50. We have
found that at least one amplitude vanishes at the Beraha numbers
q=0, 1, 2, B5, 3, B7, B8, B9, B10, B11. The dominant amplitude vanishes only
at the first seven (namely, q=0, 1, 2, B5, 3, B7, B8), so that these latter
numbers are isolated limiting points (see Table V). In Table V we also
notice two additional isolated zeros at q % 2.8737312493 and q %
3.3831285312. We have numerically checked that in both cases the leading
amplitudes vanish, so they too are isolated limiting points.

The first two real zeros q=0, 1 are trivial. At q=2, there are 35
nonzero eigenvalues with zero amplitudes, 31 zero eigenvalues with zero
amplitudes, and 21 zero eigenvalues with nonzero amplitudes. The conver-
gence of the fourth through ninth real zeros to their corresponding limiting
values (namely, B5, 2.8737312493, 3, B7, 3.3831285312, B8) is exponentially
fast as shown in Table V. Finally, the tenth real zero converges at an
approximate 1/n rate to the value q % 3.5204366907.

In summary, there are nine real isolated limiting points at q=0, 1, 2,
B5, 2.8737312493, 3, B7, 3.3831285312, and B8. We have been unable to say
whether or not there are any complex isolated limiting points; but we do
not see any candidate in Fig. 21.

6. THERMODYNAMIC LIMIT

In this section we will review the Bethe-Ansatz solution found by
Baxter (18, 19) for the thermodynamic limit of the zero-temperature triangular-
lattice Potts antiferromagnet (Section 6.1), and carefully recalculate
Baxter’s predictions for the limiting curve B. where the chromatic roots
are expected to accumulate (Section 6.2). The resulting picture will be sub-
stantially similar to that set forth by Baxter, (19) but with a few important
qualitative differences. Next we will compare Baxter’s predictions for the
dominant eigenvalues with our finite-lattice data (Section 6.3), and
comment on the agreements and discrepancies (Section 6.4).

6.1. Baxter’s Solution

In terms of the variables x and h defined by

q=2−x−x−1=2+2 cos h (6.1)

with |x| < 1 and 0 < Re h < p, Baxter defined three functions (eigenvalues)
gi(q) as follows:
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g1(q)=−
1
x
D
.

j=1

(1−x6j−3)(1−x6j−2)2 (1−x6j−1)
(1−x6j−5)(1−x6j−4)(1−x6j)(1−x6j+1)

(6.2a)

log g2(q)=F
.

−.
dk

sinh kh
2k
1 sinh[k(p−2h)/2]
(2 cosh kh−1) sinh(pk/2)

−
cosh[k(p−2h)/2]

(2 cosh kh+1) cosh(pk/2)
2 (6.2b)

log g3(q)=F
.

−.
dk

sinh kh [sinh k(p−h)]
k sinh pk [2 cosh k(p−h)−1]

. (6.2c)

These formulae were obtained in ref. 18, but the corresponding ranges of
validity were established only in ref. 19. In particular, Baxter found that the
complex q-plane can be divided into three domains Di [i=1, 2, 3], in each
of which the dominant eigenvalue is gi. According to Baxter, (19) the inter-
sections of these regions with the real axis are as follows:

D1 5 R={q > 4} 2 {q < 0} (6.3a)

D2 5 R={q0 < q < 4} (6.3b)

D3 5 R={0 < q < q0}. (6.3c)

Baxter therefore determined the parameter q0 by solving the equation

g2(q0)=g3(q0) (6.4)

via Newton’s method and numerical integration of (6.2b)/(6.2c), and found
q0 % 3.81967. We have refined this computation using the same method,
and find

q0(Baxter) % 3.819671731239719. (6.5)

This point is labelled F in Figs. 24 and 26 (hF % 0.427907971348122). We
have also plotted the eigenvalues g2 and g3 over the entire range 0 < h < p
and verified that there is only one crossing point, namely (6.5). However, as
we will argue later, the intersections Di 5 R are in fact more complicated
than what is claimed in (6.3), so that (6.5) is not in fact the correct value
of q0 if Baxter’s three eigenvalues are in fact the dominant ones. (See
Sections 6.3 and 6.4 for further discussion.)

In order to obtain the limiting curve B. in the complex q-plane,
Baxter (19) took advantage of the following simpler expressions for the ratios
of eigenvalues:
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g2(q)
g1(q)

=D
.

j=1

11−wp2j−1
1−wp2j
23 1−p6j
1−p6j−3

(6.6a)

g3(q)
g1(q)

=D
.

j=1

11+w2y j
1−w2y j
23 1−y3j
1+y3j

(6.6b)

where

p=−e ip
2/3h (6.7a)

y=e−2ip
2/3(p−h) (6.7b)

w=e2pi/3. (6.7c)

In these equations we require that |p| < 1 and |y| < 1 so that the products
converge; this corresponds to Im h < 0.

As Baxter (19) noted, the parameter h enters into the products (6.6a,b)
only via p or y, respectively, and these two variables are invariant under
the transformations

p

h
Q
p

h
+6k 2 pQ p (6.8a)

p

p−h
Q
p

p−h
+3kŒ 2 yQ y (6.8b)

for any integers k, kŒ. Thus, each solution of |g2/g1 |=1 in the com-
plex p-plane corresponds to an infinite family of solutions in the complex
h-plane: these can be thought of as a ‘‘primary’’ solution (namely, the one
with largest Re h contained in the physical region 0 < Re h < p) and its
‘‘images’’ under the transformation (6.8a) with k \ 1. As kQ. these
‘‘image’’ curves converge to h=0 (q=4). Likewise, each solution of
|g3/g1 |=1 in the complex y-plane corresponds to an infinite family of
solutions in the complex h-plane: a ‘‘primary’’ solution (the one with
smallest Re h contained in the physical region) and its ‘‘images’’ under the
transformation (6.8b) with kŒ \ 1. As kŒQ. these ‘‘image’’ curves con-
verge to h=p (q=0). It is important to note that the transformations (6.8)
do not tell anything about the dominant or subdominant character of the
equimodular curve at the transformed value of h; this property has to be
checked by other means.

Let us emphasize that the symmetries (6.8) play no essential logical
role in our analysis: one can, in principle, discover all the equimodular
curves by direct search, without any reference to these symmetries. But it is
useful to know, once one has discovered one equimodular curve, that in
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certain circumstances there must exist others as well (and to know their
exact location).

Important Remark. Neither the eigenvalues (6.2b,c) nor the eigen-
value ratios (6.6a,b) or g3/g1=(6.6a)/(6.6b)—nor even their absolute
values—are invariant under the transformation hQ h+2pkœ that leaves q
invariant. Therefore, we must require 0 < Re h < p when using these for-
mulae.

Remarks

1. The formula q=2−x−x−1 maps the disc |x| < 1 one-to-one onto
the q-plane cut along the interval [0, 4]. Therefore (as Baxter observed in
ref. 19), when q is real and q > 4 or q < 0, the parameter x is also real, as is
the eigenvalue g1 defined in (6.2a).

2. The formula q=2+2 cos h maps the strip 0 < Re h < p one-to-
one onto the q-plane cut along the intervals (−., 0] and [4,.). In par-
ticular, when q is real and 0 < q < 4, the parameter h is real (0 < h < p), as
are the eigenvalues g2 and g3 defined in (6.2b)/(6.2c).

3. The definitions (6.2a), (6.6a), and (6.6b) cannot be applied directly
on the real q-axis for 0 < q < 4; rather, one must consider a limit in which
Im h ‘ 0 and hence |x|, |p|, |y| ‘ 1.

6.2. Recomputation of Baxter’s Phase Diagram

In this subsection we will carefully recompute the limiting curve B.
under the tentative hypothesis that Baxter’s three eigenvalues are in fact the
dominant ones. (In Section 6.3 we will test this hypothesis against our finite-
lattice data.)

6.2.1. Computation of Limiting Curves

Our goal is to compute the locus of points where two or more of the
eigenvalues gi are equimodular, and to determine at each such point
whether these equimodular eigenvalues are dominant or subdominant. We
carry out this procedure as follows:

1. We use (6.6a) to compute the locus |g2/g1 |=1 in the complex
p-plane (Fig. 22); we then transform the resulting plot to the complex
h-plane using (6.7a). As noted above, each curve in the p-plane corresponds
to an infinite family of curves in the h-plane. Along each of these latter
curves, we compute |g3/g1 | and classify the curve (or portions of it) as
dominant or subdominant.
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Fig. 22. Equimodular curves |g2/g1 |=1 in the complex p-plane. Several important points
are labelled G, H, I, J, ... (see text).

2. We use (6.6b) to compute the locus |g3/g1 |=1 in the complex
y-plane (Fig. 23); we then transform the resulting plot to the complex
h-plane using (6.7b). Each curve in the y-plane corresponds to an infinite
family of curves in the h-plane. Along each of these latter curves, we
compute |g2/g1 | and classify the curve (or portions of it) as dominant or
subdominant.

3. We use (6.6a,b) to compute the locus |g3/g2 |=1 directly in the
complex h-plane and to determine dominance or subdominance.

4. We combine the three families of equimodular curves into a single
h-plane plot (Fig. 24).

5. Finally, we transform the resulting curves to the complex q-plane
using (6.1). The resulting ‘‘phase diagram’’ is shown in Fig. 25; a detailed
view near the point q=4 is shown in Fig. 26.

Despite the explicit formulae (6.6), these computations are far from
straightforward, due to the slow convergence of the products when |p| or
|y| is near 1 (i.e., when q is near the interval 0 < q < 4 of the real axis) and
to the need for very high numerical precision in intermediate stages of the
computation. We discuss these technical points in the Appendix.

The equimodular curves |g2/g1 |=1 in the complex p-plane are shown
in Fig. 22. Each equimodular curve Cn has exactly two endpoints. As we
approach the circle |p|=1, more smaller equimodular curves appear. In
order to disentangle the larger curves from these new smaller curves, we
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Fig. 23. Equimodular curves |g3/g1 |=1 in the complex y-plane. Several important points
are labelled G, H, I, J, ... (see text).

Fig. 24. Equimodular curves for the eigenvalues gi in the complex h-plane. The portions of
curves where the equimodular eigenvalues are dominant (resp. subdominant) are depicted in
black (resp. grey). The eigenvalue gi is dominant in each region labelled Di. Several important
points are labelled A, B, C, ... (see text). To facilitate comparison with Baxter’s results (see
ref. 19, Fig. 5), we have used the same labelling of points wherever possible.
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Fig. 25. Dominant equimodular curves for the eigenvalues gi in the complex q-plane (in
black). For comparison, we show (in grey) the limiting curve B for the strip Lx=11P. To
facilitate comparison with Baxter’s results (see ref. 19, Fig. 5), we have used the same labelling
of points wherever possible. We warn the reader that the presence of the additional curves
(AH, LK, etc.) to the right of q=0 has not been definitively established; see Sections 6.3 and
6.4 for a detailed discussion.

have followed each equimodular curve carefully as it approaches the |p|=1
limit. In Fig. 22 we have shown all equimodular curves that intersect the
circle |p|=0.99.

The principal feature is a curve C1 running from point G (p=−1,
h=p/6 and images) via the origin (p=0, h=−i0) to point H (p=−i,
h=2p/3 and images). The next-longest curve (C2) runs from point I (p=i,
h=2p/9 and images) to point J (p=e3pi/7, h=7p/30 and images). The
third-longest curve (C3) runs from point K (p=e−pi/5, h=5p/12, and
images) to point L (p=e−pi/4, h=4p/9, and images). Some further equi-
modular curves and their endpoints are shown on Fig. 22 and enumerated
in Table VIII. In this table we have first shown the curves Cn for which
both endpoints are reasonably well determined (see below). Then we have
listed some other well-determined endpoints whose counterparts could not
be estimated with sufficient accuracy; these points are grouped into the
category ‘‘Others.’’

It is curious that all these endpoints appear to lie at p=e ij where j
is a rational multiple of p (with a small denominator). In order to test
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Fig. 26. Detail of Fig. 25 around the point q=4. We depict the dominant (resp. subdomi-
nant) equimodular curves in black (resp. grey). The solid circles (•) denote special points dis-
cussed in the text, while the squares (i) and empty circles (p) denote the Beraha numbers
q=B11,..., B16, B24, B27 and B.=4 (point C). The empty circles denote those Beraha numbers
which belong to any equimodular curve. We denote by Di the regions where the eigenvalue gi
is dominant.

this conjecture, we have performed detailed fits as follows: For each
endpoint we first obtained ten nearby equimodular points p with
|p|=0.990, 0.991,..., 0.999. Then we performed a least-squares fit of the
data18 using the polynomial Ansatz

18 We have made the computations with data truncated to eight decimal digits, hence the error
of the input data is 10−8. Note, however, that the deviations from (6.9) are not statistical
fluctuations; rather, they are ‘‘corrections to scaling,’’ i.e., due to neglected higher-order
terms in (6.9). A large value of the q2 is thus a signal that we need to include higher-order
terms in our Ansatz.

Arg p
p
=

Arg pFit
p
+C

8

k=1
ak(1− |p|)k (6.9)
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in order to estimate the phase j=Arg pFit at the endpoint. If the equimo-
dular curve is smooth close to |p|=1, this Ansatz is expected to work well.
We have chosen an eighth-order polynomial in order to take into account
as many data points as possible while allowing a little freedom (we have
one degree of freedom in the fits). As a check, we have repeated this com-
putation with lower-degree polynomial Ansätze and dropping the data with
the smallest values of |p| (in order to have at least one degree of freedom in
the fit). We have used the stability of the estimates for Arg pFit as a gui-
deline to decide whether a fit is good or not (see below).

We next asked whether the estimated value of Arg pFit/p is or is not
close to a rational number with a small denominator. We have used the
following basic criterion: the real number x is ‘‘close’’ to the rational
number m/n whenever the

‘‘discrepancy’’ — |nx−m| (6.10)

is sufficiently small. In order to make precise what we mean by ‘‘suffi-
ciently small,’’ let us first define

dn(x)=min
m ¥ Z
|nx−m| . (6.11)

Clearly, for every real number x and every integer n, we have dn(x) [ 1/2;
so, if we are to have good evidence that x=m/n, we will need to insist, at
the very least, that the ‘‘discrepancy’’ be ° 1/2. But this requirement is, in
fact, nowhere near stringent enough: the trouble is that, in our procedure,
the denominator n is not fixed in advance; rather, we start from the
number x and we ask whether there exists a (small) integer n such that
dn(x)° 1. And the occurrence of some integers n such that dn(x)° 1 is by
no means a rare event. Indeed, a theorem of Hurwitz (1891) asserts that for
every real number x, there exist infinitely many integers n such that
dn(x) < 1/(`5 n).19 So we will need to demand that dn(x)° 1/n. This

19 The constant `5 is best possible, as is shown by x=(1+`5 )/2. For a proof of Hurwitz’s
theorem, see ref. 54, Chapter 1; ref. 55, Chapters 5 and 6; or ref. 56, Chapter I.

suggests using the criterion dn(x) [ d/n s for some d > 0 and some s > 1.
Suppose, in fact, that x is a randomly chosen real number (from a

uniform distribution). Then it is not hard to show that

Prob(there exists an integer n with dn(x) [ d/n s) [ C
.

n=1

2df(n)
n s+1

(6.12a)

=
2dz(s)
z(s+1)

, (6.12b)
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where f(n) is the Euler totient function (i.e., the number of integers
1 [ k [ n that are relatively prime to n) and z(s) is the Riemann zeta func-
tion.20 Therefore, if we insist that

20 Proof of (6.12): Let x be a uniform random number in [0, 1]; we do all our arithmetic in the
real numbers modulo 1. For any fixed m and n, we clearly have Prob(|nx−m| [ d/n s)=
min[2d/n s+1, 1]. Now we need to sum over pairs (m, n) with 1 [ m [ n; in doing this, it
suffices to consider only pairs (m, n) that are relatively prime, since if m/n=mŒ/nŒ with
nŒ < n, then the interval |nx−m| [ d/n s is entirely contained in the larger interval
|nŒx−mŒ| [ d/nŒ s. This proves (6.12a). The equality with (6.12b) is a standard identity in
analytic number theory: see, e.g., ref. 57, p. 371.

Of course, (6.12) is still an overestimate, because it neglects the overlaps between inter-
vals whose denominators n and nŒ do not divide each other. It would be interesting to know
what the true behavior of this probability is.

‘‘discrepancy’’ [
Ez(s+1)
2z(s) n s

, (6.13)

we are following a procedure whose probability of yielding a ‘‘false positive
signal’’ is less than E (if x is chosen uniformly at random). Otherwise put,
we can define a ‘‘significance level’’

E=
2z(s) n s

z(s+1)
× ‘‘discrepancy.’’ (6.14)

For concreteness, we have chosen s=3/2. Roughly speaking, we consider
the equality x=m/n to be very strongly supported if E M 0.001, strongly
supported if E M 0.01, and a plausible guess if E M 0.05.

We have been able to fit the data corresponding to 42 endpoints. (We
have numerically located additional endpoints, but we have not included
here those endpoints that correspond to very small equimodular curves
close to the circle |p|=1.) Of these 42 endpoints, we have obtained a
reasonably good fit for the 28 points displayed in Table VI: here a ‘‘reaso-
nably good fit’’ is defined as one for which E [ 0.05 and for which the
values of Arg pFit and E are stable under changes in the degree of the poly-
nomial Ansatz (6.9). We find that 18 points have E [ 10−3 (eight of them
even have E [ 10−4), while 10 points have 10−3 < E [ 0.05.

We have found several smaller equimodular curves that are hard to see
on Fig. 22, and we suspect that they too have rational endpoints. Indeed,
we would not be surprised to learn that such rational endpoints are dense
in the unit circle (though we have no idea how to prove this conjecture).

The equimodular curves |g3/g1 |=1 in the complex y-plane are shown
in Fig. 23. Again, each equimodular curve Dn has exactly two endpoints,
and smaller equimodular curves appear as we approach the |y|=1 limit.
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Table VI. Endpoints in the Complex p-Plane With |p|=1 of the Curves Where

|g2/g1|=1a

Curve Point Arg pFit/p Arg p/p ‘‘Discrepancy’’ E h/p

C1 G 1.0000000(3) 1 0.00000005 0.0000002 1/6
H −0.4999999(3) −1/2 0.0000001 0.000001 2/3

C2 I 0.5000001(3) 1/2 0.0000001 0.000001 2/9
J 0.4285703(3) 3/7 0.000008 0.0006 7/30

C3 L −0.2500003(3) −1/4 0.000001 0.00004 4/9
K −0.1999993(3) −1/5 0.000004 0.0001 5/12

C4 P 0.2727311(7) 3/11 0.00004 0.006 11/42
O 0.2499995(3) 1/4 0.000002 0.00006 4/15

C5 M −0.1428584(3) −1/7 0.000009 0.0006 7/18
N −0.1249980(3) −1/8 0.00002 0.001 8/21

C7 T −0.3846221(7) −5/13 0.00009 0.02 13/24
S −0.3749980(3) −3/8 0.00002 0.001 8/15

C8 0.1250023(3) 1/8 0.00002 0.002 8/27
0.1199957(7) 3/25 0.0001 0.05 25/84

C17 −0.4285727(3) −3/7 0.000009 0.0006 7/12
−0.4230929(3) −11/26 0.0007 0.04 26/45

C18 −0.1000025(3) −1/10 0.00003 0.003 10/27
−0.0909045(7) −1/11 0.00005 0.007 11/30

C19 −0.0769285(7) −1/13 0.00007 0.01 13/36
−0.0714257(7) −1/14 0.00004 0.008 14/39

Others −0.5999993(3) −3/5 0.000004 0.0002 5/6
−0.7500002(3) −3/4 0.00000009 0.00003 4/27
0.7499995(3) 3/4 0.000002 0.00006 4/21
0.6000006(3) 3/5 0.000003 0.0001 5/24
0.2999986(7) 3/10 0.00001 0.002 10/39

V 0.2000006(3) 1/5 0.000003 0.0001 5/18
0.1428558(3) 1/7 0.00001 0.0007 7/24
0.0999991(7) 1/10 0.000009 0.001 10/33

a For each endpoint we show the ‘‘curve’’ to which it belongs (see Fig. 22), the estimated value
of its phase Arg pFit (see text), the conjectured exact value Arg p, the ‘‘discrepancy’’
[cf. (6.10)], the ‘‘significance level’’ E [cf. (6.14)], and the corresponding ‘‘primary’’ h value.
For some selected values we also include a label (‘‘point’’). When we have a curve for which
one endpoint is well-determined and the other is not, we include the former point in the
category ‘‘others’’ (see text).

We have shown in Fig. 22 all equimodular curves that intersect the circle
|y|=0.99.

The principal feature is again a curve D1 running from point G
(y=e−4pi/5, h=p/6, and images) via the origin (p=0, h=p−i0) to point
H (y=1, h=2p/3, and images). The next-longest curve (D2) runs from
point K (y=e6pi/7, h=5p/12, and images) to point L (y=e4pi/5, h=4p/9,
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and images). Finally, a small curve (D4) runs from point GŒ (y=e−8pi/11,
h=p/12, and images) to point HŒ (y=e−10pi/13, h=2p/15, and images); we
call these points GŒ and HŒ because they correspond to h values that are
images of the points G and H under the p-plane transformation (6.8a)
[though they are not images in the y-plane].

Once again, all the endpoints appear to lie at y=e ik where k is a
rational multiple of p with small denominator. Even more curiously, many
of these endpoints correspond to h values that are also observed as
endpoints in the |g2/g1 |=1 plot (e.g., all points with a label in Tables VI
and VII). We performed fits to those endpoints in the same manner as just
explained for the p-plane. We found 44 endpoints, and of these we

Table VII. Endpoints in the Complex y-Plane With |y |=1 of the Curves Where

|g3/g1|=1a

Curve Point Arg yFit/p Arg y/p ‘‘Discrepancy’’ E h/p

D1 G −0.8000002(3) −4/5 0.000001 0.00004 1/6
H 0.0000000(6) 0 0.00000002 0.00000006 2/3

D2 K 0.8571435(3) 6/7 0.000005 0.0003 5/12
L 0.7999997(3) 4/5 0.000002 0.00008 4/9

D4 −0.7692308(7) −10/13 0.0000001 0.00003 2/15
−0.7272743(3) −8/11 0.00002 0.002 1/12

D6 −0.4615359(7) −6/13 0.00003 0.006 35/48
−0.4000003(3) −2/5 0.000001 0.00006 13/18

D7 −0.5714279(3) −4/7 0.000004 0.0003 20/27
−0.5454561(3) −6/11 0.00002 0.002 31/42

D9 N 0.9230794(3) 12/13 0.00003 0.006 8/21
M 0.9090890(3) 10/11 0.00002 0.003 7/18

Others −0.4705939(7) −8/17 0.0001 0.03 46/63
−0.5263122(7) −10/19 0.00007 0.02 53/72
−0.6153817(3) −8/13 0.00004 0.007 38/51
−0.7058815(7) −12/17 0.00001 0.004 1/18

I −0.8571420(1) −6/7 0.000006 0.0004 2/9
O −0.9090929(3) −10/11 0.00002 0.003 4/15
V −0.9230785(7) −12/13 0.00002 0.004 5/18
S 0.5714292(3) 4/7 0.000004 0.0003 8/15
T 0.5454538(7) 6/11 0.000008 0.001 13/24

0.3999997(3) 2/5 0.000002 0.00007 7/12
0.2857149(7) 2/7 0.000004 0.0003 11/18

a For each endpoint we show the ‘‘curve’’ to which it belongs (see Fig. 23), the estimated value
of its phase Arg yFit (see text), the conjectured exact value Arg p, the ‘‘discrepancy’’
[cf. (6.10)], the ‘‘significance level’’ E [cf. (6.14)], and the corresponding ‘‘primary’’ h value.
For some selected values we also include a label (‘‘point’’). When we have a curve for which
one endpoint is well-determined and the other is not, we include the former point in the
category ‘‘others’’ (see text).
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obtained reasonably good fits for the 23 endpoints displayed in Table VI.
All these points satisfy the criterion E [ 0.05, and both Arg pFit and E are
rather stable as we vary the degree of the polynomial Ansatz (6.9). Of these
23 endpoints, we find 12 satisfying E [ 10−3 (six of them satisfy the stronger
condition E [ 10−4), while the other 11 endpoints satisfy 10−3 < E [ 0.05.

We have also found more smaller equimodular curves that are hard to
see on Fig. 23; we conjecture that they have rational endpoints and we
wonder whether these rational endpoints are dense in the unit circle.

Remark. It is important to note that the two main points in
Figs. 24–25 (namely, G and H) are extremely well determined in both the
p- and y-planes. In particular, their E values range from 4×10−5 down to
6×10−8. Thus, we can trust that the values of h for these two points are
given exactly by hG=p/6 and hH=2p/3 (see Tables VI–VII).

6.2.2. Summary of h-Plane Phase Diagram

Let us now describe the resulting zero-temperature ‘‘phase diagram’’ in
the complex h-plane (Fig. 24) and discuss the agreements and discrepancies
with respect to Baxter. (19) For simplicity we have labelled the points by the
same letters as in Fig. 5 of ref. 19. The portions of curves where the equi-
modular eigenvalues are dominant (resp. subdominant) are depicted in
black (resp. grey).

The curve A–B (resp. B–C) corresponds to the dominant equimo-
dularity of g3 (resp. g2) and g1. These two curves together with the real h
axis enclose the rest of the dominant curves. The position of these points is

hA=p (6.15a)

hB % 0.508588719845180−0.625516375803391 i (6.15b)

hC=0. (6.15c)

The point B is triply equimodular (i.e., a T point), so that three equi-
modular curves cross there:

1. C–B–H, which corresponds to |g1 |=|g2 | (it is dominant along C–B
and subdominant along B–H); and

2. A–B–Q–G, which corresponds to |g1 |=|g3 | (it is dominant along
A–B, subdominant along B–Q, and dominant again along Q–G);

3. R–B–Q–F, which corresponds to |g2 |=|g3 | (it is subdominant
along R–B, dominant along B–Q, and subdominant again along Q–F).
Point R corresponds to h=−i..
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This last result contradicts (19) where the entire curve B–Q–F is claimed to
be dominant. The position of these points is21

21 Despite appearances, the point F in Fig. 24 is not triply equimodular: the dominant equi-
modular curve |g1 |=|g2 | meets the real axis at HŒ (h=2p/15 % 0.41888), i.e., slightly below
point F; this is discussed below at (6.17b) ff. This splitting is somewhat more visible on
Fig. 26.

hQ % 0.440568708859061−0.235993788540783 i (6.16a)

hF % 0.427907971348122. (6.16b)

The point Q is also triply equimodular, so that three equimodular
curves cross there. Two of them have just been discussed: A–B–Q–G and
R–B–Q–F. The third is C–Q–G, which corresponds to |g1 |=|g2 |; it is
dominant along C–Q and subdominant along Q–G. Please note that the
subdominant curve Q–G lies always to the right of (but very close to) the
dominant curve Q–G.

There are infinitely many equimodular curves |g1 |=|g2 | terminating at
point C (q=4) and converging to it: they are images under (6.8a) of the
two curves C–B–H and C–Q–G. The dominant eigenvalue alternates
between g1 and g2 as these curves are crossed. For simplicity, we have
shown in Fig. 24 only the first few of these image curves. The endpoints of
these curves can be obtained easily using the values of hG=p/6 and
hH=2p/3 (see Table VI) and transformation (6.8a). The result is

hG, k=
p

6(1+k)
(6.17a)

hH, k=
2p

3(1+4k)
. (6.17b)

According to (1.3)/(6.1), they correspond to Beraha numbers: hG, k is
B12+12k, and hH, k is B3+12k.

Likewise, there are infinitely many equimodular curves |g1 |=|g3 | ter-
minating at point A (q=0) and converging to it: they are images under
(6.8b) of the two curves A–B–Q–G and A–H. The dominant eigenvalue
alternates between g1 and g3 as these curves are crossed. Once again, we
have shown in Fig. 24 only the first few of these image curves. The end-
points of these curves can be obtained easily using the values of hG=p/6
and hH=2p/3 (see Table VII) and transformation (6.8b). The result is

hG, kŒ=
1+15kŒ
6+15kŒ

p (6.18a)
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hH, kŒ=
2+3kŒ
3+3kŒ

p. (6.18b)

In this case, none of them corresponds to a Beraha number.
There are also many small equimodular curves lying near the real

h-axis, some of which are dominant; they arise from the curves I–J, K–L,
etc. in Figs. 22 and 23. The number of these curves grows rapidly as
|Im h|Q 0, so we cannot possibly compute all of them; moreover, the
computation becomes increasingly difficult as |Im h|Q 0, since |p| and |y|
are tending to 1. We have, in any case, shown in Fig. 24 all those curves in
the range 0.2 [ Re h [ 2.3 that intersect the half-plane Im h [ −0.01.
Again, one can obtain the endpoints of these curves by applying transfor-
mations (6.8b) to the corresponding h values in Tables VI and VII. These
endpoints are not in general Beraha numbers. Only point I (hI=2p/9) and
its transformed values under (6.8a),

hI, k=
2p
9+12k

, (6.19)

are Beraha numbers (namely, B9+12k).
It follows from Fig. 24 that the point q0 should not be identified with

F (as Baxter (19) did), but rather with the point G at position

hG=
p

6
% 0.523598775598299 (6.20)

(see Tables VI and VII).

6.2.3. Summary of q-Plane Phase Diagram

In Fig. 25 we show the above ‘‘phase diagram’’ in the q-plane (for
clarity, only the dominant equimodular curves have been depicted). This is
quite similar to Fig. 5 of ref. 19, except for four issues:

1. The ‘‘phase diagram’’ around point C (q=4) is richer than the
one found by Baxter (see Fig. 26 for a detailed plot of this region). The
largest components of the region D2 (where g2 is dominant) are bounded
by C–B–Q–C and its complex-conjugate counterpart C–E–QŒ–C. The
points B and Q take the values

qB % 4.099903170634857+0.649694690705481 i (6.21a)

qQ % 3.859627688708099+0.203154495450945 i. (6.21b)
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However, there are additional components of D1 and D2 near point C;
indeed, as we approach point C the dominant eigenvalue alternates
between g1 and g2. Thus, g1 is dominant on the region lying between
C–Q–G–QŒ–C and C–B15–C; g2 is dominant on the region between the
curve C–B15–C and the next curve we find towards C, etc. Baxter found
[via the transformation (6.8a)] only half of the curves around point C,
namely, those curves that are images of C–B–H and past through the
Beraha numbers B3+12k. (In Fig. 26 we have shown two of these curves,
corresponding to B15 and B27.)

2. If we define q0 as the point on the real q-axis where the region D3
ends, then the above discussion implies that q0 is not given by qF %
3.819671731239719 as Baxter believed [cf. (6.5)], but rather by

q0=qG=B12=2+`3 % 3.732050807568877 (6.22)

[cf. (6.20)].
3. The ‘‘phase diagram’’ around point A (q=0) is also richer than

the one found by Baxter. The analytic structure is similar to the one
already discussed for the point C, except for the fact that now the domi-
nant eigenvalue alternates between g1 and g3. Again, Baxter found [via
(6.8b)] only some of the equimodular curves in this region. The physical
meaning of these new curves is not clear to us.

4. We also find many new dominant equimodular curves lying very
close to the real q-axis between points A and C. Some of them (lying
between H and G) have been depicted in Fig. 25. These curves were missed
by Baxter and their physical meaning is unclear.

Let us stress that Baxter was aware of some (though not all) of the
‘‘extra’’ equimodular curves discussed here. He said in ref. 19, p. 5252:

We have ignored those alternative curves as the finite lattice calculations give no
evidence of there being zeros on them, and the full set of complex zeros just fits
onto BAE, BCE, BFE.

It is an open question whether ignoring these curves is indeed the correct
thing to do; we shall address this question more fully in Sections 6.3
and 6.4.

On Fig. 25 we have also superposed the limiting curve for L=11P (see
Fig. 16).22 This curve lies quite close to the main parts of the infinite-strip-

22 L=12P would be substantially similar, had we been able to compute the limiting curve for
it (compare Figs. 16 and 17).

width limiting curve obtained in this section. The point q0 for the L=11P
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Table VIII. Summary of Qualitative Results for the Eigenvalue-Crossing Curves B

and for the Isolated Limiting Points of Zerosa

Eigenvalue-Crossing Curves B Isolated Points

Lattice #C #E #T #D #ER min Re q q0 max Re q # RI # CI

2F 2 0
3F 3 6 0 0 0 1.20474 2.56984 3.40223 3 0
4F 2 6 2 0 0 0.81647 2.75925±0.15444 ig 3.63983 4 0
5F 1 6 12 0 4 0.55862 3 3.77830 4 0
6F 1 6 4 0 0 0.37963 3.16093 3.86641 5 0
7F 1† 6† 4† 0 0† 0.25054 3.27640 3.92580 6 0
8F 1† 6† 4† 0 0† 0.13343 3.36106 3.96756 6 0
9F 3.42513 7 0

2P 2 0
3P 3 0
4P 3 4 0 0 1 1.37053 3.48141 4 5 0
5P 3 4 0 0 1 0.47725 3.20722 3.87699 5 0
6P 1 4 2 0 0 0.02077 3.25242 4.28386 6 0
7P 1 4 4 0 1 −0.22792 3.47900 3.99964 7 0
8P 1 4 2 0 0 −0.37137 3.51477 4.04970 7 0
9P 1 4 2 0 0 −0.45760 3.52706 4.28286 7 0
10P 1† 4† 2† 0 0† −0.51081 3.63483 4.12341 9 0
11P 1† 4† 2† 0 0† −0.54399 3.64414 4.15609 9 0
12P 2† 3.64317 9 0

2Z 2 0
4Z 2 4 0 0 0 2.09914 2.73717±0.17233 ig 4.00485 5 0
6Z 1 4 2 0 0 0.36185 3.17526 4.25895 6 1
8Z 1† 4† 2† 0 0† −0.21435 3.39410 4.28991 7 1†

10Z 3.52044 9

a For each triangular-lattice strip considered in this paper, we give the number of connected
components of B (#C), the number of endpoints (#E), the number of T points (#T), the
number of double points (#D), and the number of enclosed regions (#ER); we also give the
minimum value of Re q on B, the smallest value q0 where B intersects the real axis
(g denotes an almost-crossing), and the maximum value of Re q on B. We also report the
number of real isolated limiting points of zeros (#RI) and the number of complex-conjugate
pairs of isolated limiting points (#CI). The symbol † indicates uncertain results.

strip (as well as for the rest of the strips considered in this paper: see
Table VIII) lies below both Baxter’s prediction (6.5) and our somewhat lower
prediction (6.22). So our results in Sections 3–5 are compatible with both
predictions; unfortunately our strips are not yet wide enough to distinguish
between them. On the other hand, it is precisely around points A and C
that the finite-strip limiting curve is not defined, so our transfer-matrix
results do not give any clue as to whether the additional dominant equi-
modular curves we have found there can be neglected (as Baxter did) or not.
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Another way of discovering whether the true value of q0 is given by
point F (6.5) or by point G (6.22) is to consider the isolated limiting points
of wide triangular-lattice strips. We expect that all real isolated limiting
points are smaller than q0. Thus, if we find any isolated limiting point
larger than (6.22) [and smaller than (6.5)], then we should conclude that
our prediction is false. In Tables I–V we do not find any such zero. The
largest real zero we have found is % 3.6345747 < qG=B12 % 3.7320508... .
On the other hand, for free and cylindrical boundary conditions, all real
isolated limiting points are expected to be Beraha numbers. Thus, if q0 were
given by F, as Baxter predicts, then the largest real isolated limiting point
would be B14 % 3.801938. On the other hand, if q0 is given by G, as we
predict, then the largest real isolated limiting point would be
B11 % 3.682507 (or perhaps B12 % 3.732051). In Fig. 26 we have also
depicted the position of the Beraha numbers B11,..., B16 to make easier the
comparison with the two alternative values of q0.

6.3. Comparison of Baxter’s Eigenvalues with Finite-Lattice Data

Let us now compare Baxter’s predictions for the leading eigenvalues
gi(q) [i=1, 2, 3] with our finite-lattice data on strips up to width L=12
(with cylindrical boundary conditions). We shall consider slices of fixed
Im q, and plot log |gi(q)| as a function of Re q. Simultaneously, we shall
also plot fk(q, L)=L−1 log |lk(q)| for the five largest (in modulus) eigen-
values of the transfer matrix. Our goal is to see whether analogues of
Baxter’s eigenvalues g1, g2, g3 can be observed in our finite-lattice data.

Let us begin at large Im q, where the behavior is simplest. A plot for
Im q=2 is shown in Fig. 27. Baxter’s eigenvalues g1, g2, g3 are shown as a
solid blue line, a dashed black line, and a dashed-dotted red line, respec-
tively. The eigenvalue g1 is dominant for Re q M −0.52, the eigenvalue g3 is
dominant for −0.52 M Re q M 3.82, and the eigenvalue g1 is once again
dominant for Re q N 3.82. The eigenvalue g2 is everywhere strongly sub-
dominant. Comparing these curves with our finite-lattice eigenvalues, we
see that:

• In the region Re q M −0.52, the leading eigenvalue agrees almost
perfectly with g1, and the second eigenvalue agrees very closely with g3.

• In the region −0.52 M Re q M 3.82, the leading eigenvalue agrees
quite well (though not perfectly) with g3. Moreover, in a small part of this
region near its two extremes, we can identify a subleading eigenvalue that
appears to correspond to g1. However, in most of this region we are unable
to identify an eigenvalue corresponding to g1—conceivably it exists but is
hidden under too many other subleading eigenvalues.
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Fig. 27. Comparison of Baxter’s eigenvalues (6.2) with the most dominant eigenvalues of
the transfer matrix for Im q=2. Curves show the logarithm of Baxter’s eigenvalues log |gi |:
the solid curve corresponds to g1, the dashed curve to g2, and the dot-dashed curve to g3.
Points show the free energy fk=(1/L) log |lk | associated to the five largest eigenvalues (in
modulus) of the transfer matrix for a triangular-lattice strip of width L=12P. The index k is
coded as follows: k=1 (the dominant eigenvalue, p ), 2 (i), 3 (g), 4 (j), and 5 (× ). The
solid green dots represent the extrapolation of the dominant eigenvalue to L=..

• In the region Re q N 3.82, the leading eigenvalue almost perfectly
with g1. However, we are unable to identify any eigenvalue corresponding
to g3, except perhaps for Re q just above the crossover point % 3.82.

We have also extrapolated to the infinite-volume limit LQ. the
values of the free energy f1(L) corresponding to the leading eigenvalue. At
values of q where the theory is critical, conformal field theory predicts that
the finite-size corrections to the bulk free energy should be of the form

f1(L)=f1(.)+
pG
6
c
L2
+·· · (6.23)

where c is the system’s conformal charge, G is a geometrical factor that
equals `3 /2 on the triangular lattice, and the dots stand for higher-order
corrections. At values of q where the theory is noncritical, the finite-volume
effects should decay exponentially as LQ., so one may expect that the
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Ansatz (6.23) will again work well (and simply yield a very small number
for c). We therefore estimated the free energy f1(.) by inserting the data
points L=11, 12 into the Ansatz (6.23). The results are shown as solid
green dots on Fig. 27.

For Re q M −0.52 and Re q N 3.82, the extrapolated free energy f1(.)
coincides almost exactly with the value for L=12 (as well as with Baxter’s
eigenvalue g1), in accordance with our expectation that the region outside
the curve ABCEA is noncritical and hence has exponentially rapid
convergence to the infinite-volume limit. In the intermediate regime
−0.52 M Re q M 3.82, the extrapolated free energy coincides almost exactly
with Baxter’s eigenvalue g3 (except near the boundaries of this regime,
where the extrapolation behaves less well); indeed, it coincides with g3 sub-
stantially better than L=12 points did, suggesting that the theory in this
region is indeed critical and satisfies (6.23) with c ] 0.

The behavior is similar at Im q=1.5 (Fig. 28) and Im q=1 (Fig. 29);
the main difference is that the subleading eigenvalue in the region
Re q M −0.5 is more distant from g3 than it was for Im q=2. In particular,
for Im q=1 the two leading finite-volume eigenvalues do not even cross;
this reflects the fact that Im q=1 lies below the leftmost endpoint of the
equimodular curve (see Fig. 17). However, this is almost certainly an effect

Fig. 28. Comparison of Baxter’s eigenvalues (6.2) with the most dominant eigenvalues of the
transfer matrix for Im q=1.5. The notation is as in Fig. 27.
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Fig. 29. Comparison of Baxter’s eigenvalues (6.2) with the most dominant eigenvalues of the
transfer matrix for Im q=1. The notation is as in Fig. 27.

that will go away for larger strip widths L, as the equimodular curve closes
up towards q=0 (compare Figs. 36 and 25). The leading finite-volume
eigenvalue agrees almost perfectly with g1 for Re q M −0.5 and agrees quite
well with g3 for −0.5 M Re q M 4, despite the lack of crossing; moreover, the
agreement with g3 in the latter interval is almost perfect (except near the
endpoints) after extrapolation to L=.. All this is exactly the behavior one
would expect when a curve such as Fig. 17 is trying to approximate that of
Fig. 25. The agreement in the region Re q M −0.5 of the two leading eigen-
values with g1 and g3 must therefore be reckoned as excellent. Please note
that all these slices lie well above the point B and the curve AH.

Consider now the slice Im q=0.5, which crosses the curves BQ
and BC and twice crosses the curve AH; the corresponding eigen-
values are plotted in Fig. 30. Here the eigenvalue g1 is dominant for
Re q M −0.56; the eigenvalue g3 becomes ever-so-slightly dominant for
−0.56 M Re q M −0.09; the eigenvalue g1 again becomes dominant in the
interval −0.09 M Re q M 0.95 (between the two crossings of the curve AH),
where it has a sharp peak; the eigenvalue g3 is dominant for
0.95 M Re q M 4.01; the eigenvalue g2 is briefly dominant in the interval
4.01 M Re q M 4.17; and finally, the eigenvalue g1 is dominant for
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Fig. 30. Comparison of Baxter’s eigenvalues (6.2) with the most dominant eigenvalues of the
transfer matrix for Im q=0.5. The notation is as in Fig. 27.

Re q M 4.17. But very little of this complexity is seen in our finite-lattice
eigenvalues:

• In the region Re q M −0.56, the leading eigenvalue agrees almost
perfectly with g1.

• In the entire region −0.56 M Re q M 4.01, we see no sign whatsoever
of g1; in particular, we see no sign of the sharp peak in the interval
−0.09 M Re q M 0.95. Rather, the leading eigenvalue everywhere agrees
closely (though not perfectly) with g3.

• The region Re q % 4 is very hard to disentangle.
• For Re q N 4.17, the leading eigenvalue agrees almost perfectly with

g1. There may conceivably be one or more eigenvalues corresponding to g2;
this is uncertain.

When we extrapolate the leading eigenvalue to LQ., there is essen-
tially no change in the regions Re q M −0.56 and Re q N 4.17 (where the
agreement with g1 was essentially perfect anyway); on the other hand,
we obtain an even better agreement with g3 in the intermediate region
−0.56 M Re q M 4.01, except near the endpoint Re q % 4 where the extra-
polation goes haywire.
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Fig. 31. Comparison of Baxter’s eigenvalues (6.2) with the most dominant eigenvalues of the
transfer matrix for Im q=0.35. The notation is as in Fig. 27.

The behavior is similar at Im q=0.35 (Fig. 31). The peak in g1 is even
sharper, and once again no sign of it is seen in the finite-lattice data. Please
note that the slice at Im q=0.35 intersects only the outermost curve AH,
but it is very close to the next curve AHŒ (the maximum value of Im q
along this second curve is % 0.3435).

Likewise at Im q=0.2 (Fig. 32): this slice intersects two of the curves
(AH and AHŒ), corresponding to a sharp dip in g1 near Re q % 0.36,
followed by an even sharper rise near Re q % 0.89 and then another preci-
pitous dip. Once again, we see no sign of this behavior in the finite-lattice
eigenvalues or in the extrapolated leading eigenvalue. The same situation
holds for Im q=0.1 (Fig. 33): there are more and sharper dips and rises in
g1, including some near Re q % 4; but there is no sign of this abrupt
behavior in the finite-size data or the extrapolated data.

Finally, let us consider Im q=0 (Fig. 34). Here g1 is well-defined only
for q < 0 and q > 4 [cf. (6.2a)], while g2 and g3 are well-defined only for
0 < q < 4 [cf. (6.2b,c)]. The eigenvalues g2 and g3 cross at the point
qF % 3.819671731239719 found by Baxter [cf. (6.5)]. The leading eigen-
value f1 for L=12P reproduces well Baxter’s prediction for the leading
eigenvalue nearly everywhere (namely, g1 for q [ 0 and q \ 4, g3 for
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Fig. 32. Comparison of Baxter’s eigenvalues (6.2) with the most dominant eigenvalues of the
transfer matrix for Im q=0.2. The notation is as in Fig. 27.

Fig. 33. Comparison of Baxter’s eigenvalues (6.2) with the most dominant eigenvalues of the
transfer matrix for Im q=0.1. The notation is as in Fig. 27.
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Fig. 34. Comparison of Baxter’s eigenvalues (6.2) with the most dominant eigenvalues of the
transfer matrix for Im q=0. The notation is as in Fig. 27. Baxter’s eigenvalues g2 [cf. (6.2b)]
and g3 [cf. (6.2c)] are depicted only on the interval 0 [ q [ 4, while g1 [cf. (6.2a)] is shown
only outside that interval (see text for details).

0 [ q [ qF, and g2 for qF [ q [ 4). The main discrepancy occurs around
q=qF: we find that our finite-size data agree with g2 in the interval
q0(L=12P) % 3.64317 < q < 4, which is somewhat larger than the interval
qF % 3.81967 < q < 4 predicted by Baxter. But this is perfectly under-
standable as a finite-size effect due to the fact that q0(L=12P) is smaller
than qF. If we look at the extrapolation to infinite volume of the leading
eigenvalue, we observe an even better agreement with Baxter’s prediction in
the interval 0 M Re q M 3; but in a wide interval around q=qF the extrapo-
lation looks horrible. This is probably due to the large finite-size effects
that characterize that region where three eigenvalues are closely competing
for dominance and there is a complicated pattern of level crossings.

In summary, our finite-lattice data are in excellent agreement with
Baxter’s predictions, except on one major point: we find no evidence of an
eigenvalue corresponding to g1 in the region of the q-plane enclosed by the
curve ABCEA. As a consequence, we find no evidence of the equimodular
curves in this region that should correspond to the crossings of g1 and g3
(e.g., AHA and its images, LK, etc.) or of g1 and g2 (e.g., CQGQŒC and its
images, etc.). There seem to be two possibilities:
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(a) The eigenvalue g1 really is present in this region, but only for
strip widths L larger than those we have studied (possibly much larger). In
this case, the limiting curve B. really would exhibit all the complexities
shown in Figs. 25 and 26, and the correct value of q0 would be given by
qG=2+`3 % 3.73205 rather than by qF % 3.81967 as predicted by Baxter.

(b) For some reason, the eigenvalue g1 is not present in this region
(though it is clearly present elsewhere). In this case, the limiting curve B.
would be given by ABCEA and CBQFQŒEC only, and the correct value of
q0 would be qF % 3.81967 after all.

At present our numerical data are insufficient to distinguish definitively
between these two scenarios. But some relevant theoretical considerations
will be presented in the next subsection.

6.4. Critical Discussion

Baxter (ref. 19, p. 5242) stresses that

we expect the results to be exact: the only way they could be wrong would be if the
domain structure were more complicated. For instance, we cannot rule out the
existence of a fourth domain within which W(q) [the ‘‘partition function per
site’’] has some yet different form. All we can say is that we have seen no sign of it.

But the trouble seems to be not that a fourth dominant eigenvalue appears
in some part of the complex plane—we see no sign of that either—but
rather that in part of the complex plane one of Baxter’s three eigenvalues
(namely, g1) does not appear!

One possible explanation may have been hinted at by Baxter in his
first paper, (18) where he points out that the equivalence between Nienhuis’
loop model and the triangular-lattice chromatic polynomial ‘‘should be
treated with caution;’’ indeed he observes that it gives manifestly wrong
answers on a finite lattice when q=1 or 3. He then gives the following
explanation for this discrepancy, which we now find strikingly prescient:

We can resolve this apparent contradiction by repeating Nienhuis’ argument
for a finite lattice. We start by writing the triangular Potts model as a Kagomé
lattice six-vertex model, as has been done by Baxter et al (1976).23 We interpret
this as an SOS model by placing spins on the faces of the Kagomé lattice, adjacent
spins differing by 1

2 , the greater being to the left of the intervening arrow. Choos-
ing the hexagonal (triangular) faces to have integer (half-integer) spins and taking
J=−., we can sum over the half-integer spins to obtain Nienhuis’ SOS form of
the loop model, but with special boundary weights [emphasis added]. For 0 < q < 4
these boundary weights are complex, so it is possible for them to modify the bulk
behaviour. Obviously this is happening in the q=1 and 3 cases mentioned above.

23 The reference being cited here is Baxter, Kelland, and Wu. (58)
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In terms of the loop model transfer matrices, these boundary conditions may
mean that not all eigenvalues contribute to the partition function. (If an eigen-
vector is ‘orthogonal to the boundary vector,’ then it never enters the calculation
of ZLoop.) This must be happening in the q=1 and 3 cases, so is presumably a
general phenomenon. (Similar problems with using the six-vertex form of the Potts
model have previous[ly] been observed (see Baxter 1982b).24)

Thus not only is care necessary to select the largest eigenvalue of the loop
model transfer matrix but one should also verify that it is a contributing eigen-
value.

24 The reference being cited here is ref. 59.

Indeed, it is quite possible that Baxter’s solution of the hexagonal-
lattice loop model corresponds to some unusual boundary condition for the
triangular-lattice chromatic polynomial—different from the free and
cylindrical boundary conditions studied here—in which one or more
eigenvalues present in the latter are entirely absent in the former (or vice
versa). The presence or absence of such eigenvalues can, of course, radi-
cally change the limiting curve B in case the ‘‘missing’’ eigenvalue becomes
dominant somewhere in the complex q-plane.25

25 Here is an example of such a situation: In computing the triangular-lattice chromatic poly-
nomial with cylindrical boundary conditions, one has the choice of working entirely within
the translation-invariant subspace (as we have done) or else working in a larger space that
includes non-translation-invariant connectivities (as Roček et al. (41) have done). If one takes
the latter approach, one will find that one of the eigenvalues has an identically vanishing
amplitude (provided that translation-invariant endgraphs are used); when this non-contri-
buting eigenvalue is ignored (as it should be), both approaches will give the same limiting
curve B. On the other hand, the latter approach allows one to consider also the use of non-
translation-invariant endgraphs; and it can sometimes be arranged for the ‘‘extra’’ eigen-
value to contribute and indeed be dominant in some region of the complex q-plane, with the
result that the limiting curve B is different from what it was without that eigenvalue.
Compare, for example, ref. 41, Figs. 4(a) and (b), which show the limiting curves B for the
triangular lattice of width L=4P with different endgraphs.

But this explanation has a severe defect: if true, it would suggest that
the ‘‘missing’’ eigenvalue should be absent throughout the complex q-plane
(corresponding to an identically vanishing amplitude). In our case, by con-
trast, the eigenvalue g1 is unambiguously observed outside the curve
ABCEA; it is only inside this curve that the eigenvalue g1 ‘‘disappears’’. It
is hard to see how such a q-dependent effect could be caused by boundary
conditions.

There remains, of course, the other possibility noted earlier: namely,
that the eigenvalue g1 really is present inside the curve ABCEA as well, but
only for strip widths L larger than those we have studied. Indeed, it is not
so surprising that on lattices L [ 12 we have failed to see the gyrations of
g1 that give rise to the equimodular curves AH, AHŒ,... : after all, in this
same neighborhood (q % 0) we also fail to see the crossing of g1 and g3 that
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corresponds to the completion of the equimodular curve BA at q=0, and
there is little doubt that this feature will be restored in the limit LQ..

Light could perhaps be shed on this issue by a more detailed examina-
tion of Baxter’s Bethe Ansatz for finite-width strips (18) and a comparison of
his finite-width results with our own. It could also be useful to study
boundary conditions that are periodic in the longitudinal direction (e.g.,
cyclic or toroidal), as these seem to lead to curves B that close at q=0
already for finite L. (45–47) The trouble is that these studies are restricted, at
present, to very small L (namely, L [ 4).

7. SUMMARY AND OUTLOOK

7.1. Behavior of Dominant-Eigenvalue-Crossing CurvesB

In this paper we have computed the transfer matrix for triangular-
lattice strips of width 3 [ Lx [ 9 for free boundary conditions, 4 [ Lx [ 12
for cylindrical boundary conditions, and Lx=4, 6, 8, 10 for ‘‘zig–zag’’
boundary conditions. The transfer matrix allows the computation of the
chromatic zeros for strips of arbitrary length Ly. As the length Ly tends to
infinity (for fixed width Lx), the chromatic zeros accumulate along certain
curves (limiting curves B) and around certain points (isolated limiting
points) according to the Beraha–Kahane–Weiss theorem. (25–27) For all the
above strips except Lx=10F, 12P, 10Z, we have been able to compute the
limiting curves B. The exact computation of all the isolated limiting points
has been carried out for Lx [ 6F, Lx [ 9P and Lx [ 6Z; for the larger strips
we were able to check that certain values of q are isolated limiting points,
but we cannot be certain that we have found all of them. By studying the
behavior of the limiting curves and isolated limiting points as a function of
the strip width Lx (and boundary conditions), we hope to shed light on the
thermodynamic limit Lx, Ly Q..

The basic properties of both limiting curves and isolated limiting
points are summarized in Table VIII. In all cases the identity

endpoints=(2 × components)+(2 × double points)+(T points)

−(2 × enclosed regions) (7.1)

holds. This identity can be derived by simple topological/graph-theoretic
arguments.

By inspection of Table VIII, we observe some regularities when Lx
becomes large. For all three boundary conditions, the curve B appears to
become connected (#C=1) when Lx is large enough. For all Lx, the
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number of endpoints (#E) is 6 for free boundary conditions and 4 for the
other two boundary conditions. (Note, however, that for Lx \ 7F, Lx \ 10P,
and Lx=8Z our counts on the number of endpoints are only lower bounds:
we may have missed some.) When Lx is large enough, the number of T
points (#T) is 4 for free boundary conditions and 2 for the other boundary
conditions. We have found no evidence of double points for any of the
strips considered. Finally, the number of enclosed regions is zero except for
Lx=5F, Lx [ 5P, and Lx=7P. These regularities are in sharp contrast with
the square-lattice case, (16, 17) where the number of connected components
and endpoints seems to grow with the strip width. In particular, we have
not found in the triangular-lattice limiting curves any trace of the small
gaps and bulb-like regions that are so common in the square-lattice case. It
therefore seems that the thermodynamic limit may be achieved in a
smoother way for the triangular lattice than for the square lattice. Finally,
it is worth mentioning that in all cases except Lx=4F and 4Z, the limiting
curve B crosses the real q-axis, thus defining q0. By contrast, for the square
lattice, q0 is well-defined only for odd widths; for even widths with both
free and cylindrical boundary conditions, we found either that B fails to
intersect the real axis or that it contains a segment of the real axis passing
through a double point. (16, 17)

Let us also note that, as in the square-lattice case, (16, 17) we find chro-
matic zeros with Re q < 0. Indeed, for Lx \ 7P and Lx \ 8Z we find that the
limiting curve B intersects the half-plane Re q < 0. For free boundary
conditions, none of our limiting curves (Lx [ 8F) reach this half-plane; but
from Table VIII we can see that minRe q is decreasing and we expect that it
will be < 0 for Lx \ 10F (and possibly already for 9F).

The regularities exhibited by the limiting curves become clearer when
we superpose them all (with fixed boundary conditions). This is done in
Figs. 35, 36, and 37 for free, cylindrical and zig-zag b.c., respectively. We
find an overall behavior similar to that found for the square lattice. (16, 17)

For free boundary conditions (Fig. 35), we find a monotonic behavior with
the width Lx: both the leftmost arcs and the rightmost arcs move outwards
as Lx is increased (see also the columns labelled min Re q and max Re q in
Table VI). The value of q0 (or Re q0 for Lx=4F) is also monotonically
increasing in Lx. The overall shape of the limiting curves is similar to the
expected limiting curve in the thermodynamic limit (Fig. 25). We expect
that as Lx grows, the leftmost endpoints will tend towards q=0, while the
rightmost endpoints will go to q=qc(tri)=4. The crossing point q0 will
eventually go to either point F [cf. (6.5)] or point G [cf. (6.22)] in Fig. 25.
Unfortunately, our numerical data are not good enough to tell unam-
biguously the true limit. There is additional one feature of the limiting
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Fig. 35. Limiting curves for the triangular-lattice strips LF×.F with 3 [ L [ 8.

curves with free boundary conditions that does not correspond to any
feature of the predicted thermodynamic-limit curve: namely, a pair of small
complex-conjugate branches emerging from T points and pointing inwards.
From Fig. 35, it seems that the size of these branches does not go to zero as
Lx is increased (at least up to 8 or 9); rather their size stays more or less
constant. We are unable to say whether these branches will get shorter for
larger Lx and ultimately disappear in the limit Lx Q..

In Fig. 36 we superpose all the limiting curves with cylindrical bound-
ary conditions. As in the square-lattice case, the behavior of the leftmost
part of these curves seems to be monotonic: the arcs move outwards as Lx
is increased. In particular, min Re q decreases monotonically with the strip
width (see Table VIII). However, the behavior on the right side of the plot
is clearly not monotonic: there are differences depending on the quantity
Lx mod 3. This is to be expected, since with periodic boundary conditions
in the transversal direction, strip widths that are not multiples of 3 are
somewhat unnatural as they introduce frustration in the 3-state Potts anti-
ferromagnet. Thus, the dependence on Lx in the interval 3 M Re q M 4.5 is
not a surprise (the same feature is present in the square-lattice case, where
we find an even-odd dependence on the limiting curves (16, 17)). For fixed
values of Lx mod 3, we find that q0 is monotonic in Lx: for Lx=1 mod 3 it
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Fig. 36. Limiting curves for the triangular-lattice strips LP×.F with 4 [ L [ 11.

Fig. 37. Limiting curves for the triangular-lattice strips LZ×.F with L=4, 6, 8.
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decreases, while for Lx=0 or 2 mod 3 it increases. The shape of the limit-
ing curves for Lx=0 mod 3 is very similar to the expected thermodynamic
limit (Fig. 25), while in the other cases we find stronger finite-size effects
that we expect to disappear in the limit Lx Q.. Finally, it is worth men-
tioning the absence of the extra branches that appear for free boundary
conditions.

In Fig. 37 we superpose the limiting curves for ‘‘zig-zag’’ boundary
conditions. In this case we only have three curves, so we are unable to
extract any definitive conclusion. We can only confirm the monotonic
behavior on the leftmost side of the curves and the absence of any extra
branches. Again, the overall shape is similar to the expected thermody-
namic limit depicted in Fig. 25.

If we compare the limiting curves for different boundary conditions,
we see that the thermodynamic limit is achieved faster for cylindrical and
‘‘zig-zag’’ boundary conditions than for free boundary conditions (due to
existence of ‘‘surface’’ effects in the later). This is similar to the behavior
observed in the square-lattice case.

The main unsolved problem is, of course, whether the extra equimo-
dular curves predicted by Baxter’s formulae (Fig. 25) are really there for
large enough L. Unfortunately, the evidence from strip widths L [ 12 is
inconclusive (Sections 6.3 and 6.4).

Remark. In the computation of the limiting curves B for triangular-
lattice strips with cylindrical boundary conditions, we have found a curious
behavior involving identically vanishing amplitudes. (This is important,
because the eigenvalues corresponding to the identically vanishing ampli-
tudes must be excluded from the computation of the equimodular curves.
For square-lattice strips, by contrast, we have not observed any identically
vanishing amplitudes. (16, 17)) As explained in the introduction to Section 4,
the transfer matrix can be written (after a change of basis) in the block-
diagonal form

T(mP)=R
T+(mP) 0
0 T−(mP)

S , (7.2)

where the matrix T+(mP) lives on the subspace of reflection-invariant con-
nectivities and has dimension SqCyl(m) [i.e., the dimension of the transfer
matrix for a square-lattice strip of width m with cylindrical boundary con-
ditions], while the matrix T−(mP) lives on the subspace of reflection-odd
connectivities and has dimension TriCyl(m)−SqCyl(m). For m \ 8P we
have TriCyl(m) > SqCyl(m) and this decomposition becomes nontrivial.
Now, simple symmetry arguments (see Section 4) explain why all the
eigenvalues in the reflection-odd subspace should have identically vanishing
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amplitudes. But what is curious and mysterious is that each of these eigen-
values has an identical ‘‘partner’’ in the reflection-even subspace, also with
identically vanishing amplitude. This means that the characteristic poly-
nomial associated to the transfer matrix T(mP) can be factored as

det[T(mP)−l1]=Q1(q, l)2 Q2(q, l) , (7.3)

where the zero-amplitude eigenvalues are those coming from the factor
Q1(q, l)2. In particular, the number of eigenvalues with zero amplitude
(#VA) is always even, and it equals twice the dimension of the reflection-
odd subspace:

#VA(m)=2×[TriCyl(m)−SqCyl(m)] (7.4)

(see Table IX). This is, at any rate, what we have found for 8P [ m [ 12P
(see Sections 4.7–4.11); we conjecture that it holds for larger widths as well.

Table IX. Transfer-Matrix Dimensions for a Triangular-

Lattice Strip of Width m and Cylindrical Boundary

Conditionsa

m TriCyl(m) #VA TriCylŒ(m) SqCyl(m)

1 1 0 1 1
2 1 0 1 1
3 1 0 1 1
4 2 0 2 2
5 2 0 2 2
6 5 0 5 5
7 6 0 6 6
8 15 2 13 14
9 28 12 16 22

10 67 32 35 51
11 145 100 45 95
12 368 272 96 232
13 870 742g 126g 498
14 2211 1940g 267g 1239

a For each value of the strip width m we give the dimension of the
transfer matrix [TriCyl(m)], the number of vanishing amplitu-
des (#VA), and the effective dimension of the transfer matrix
[TriCylŒ(m)=TriCyl(m) − #VA]. For comparison, we also give
the dimensionality of the transfer matrix for a square-lattice
strip of width m and cylindrical boundary conditions
[SqCyl(m)]. The values of TriCyl(m) and SqCyl(m) were
obtained in refs. 16, 53. An asterisk denotes conjectured results.
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It follows that the effective dimension of the transfer matrix TriCylŒ(m) is
given by

TriCylŒ(m)=2SqCyl(m)−TriCyl(m). (7.5)

Numerical values for all these quantities are displayed in Table IX; of
course, the values of #VA and TriCylŒ(m) for m=13, 14 are conjectures.

Numerical values of TriCyl(m) and SqCyl(m) were first reported in
ref. 16, Table 2. An analytic formula of TriCyl(m) for prime values of m
has been obtained in ref. 53, Theorem 3. This paper also contains a
conjecture for SqCyl(m) with prime m \ 3 (ref. 53, Conjecture 2). Finally,
an analytic formula for TriCylŒ(m) has been conjectured for arbitrary
values of m (ref. 53, Conjecture 1).

7.2. Behavior of Amplitudes and the Beraha Conjecture

Let us now discuss the isolated limiting points and the role of the
Beraha numbers in the triangular-lattice strips. Our results show that the
number of isolated limiting points is a non-decreasing function of the strip
width Lx (for each boundary condition), at least up to the maximum Lx we
have been able to investigate. For free and cylindrical boundary conditions
we did not find any complex isolated limiting points (see Table VIII). For
‘‘zig-zag’’ boundary conditions we find a pair of complex-conjugate
isolated limiting points for Lx=6Z, and we have evidence of the existence
of another pair of complex-conjugate isolated limiting points for Lx=8Z.

Concerning the real isolated limiting points, most of them are Beraha
numbers (1.3). It is only for ‘‘zig-zag’’ boundary conditions that we find
real isolated limiting points that are not Beraha numbers: for Lx=4Z we
find q=5/2; for Lx=6Z, q % 2.722633; for Lx=8Z, q % 2.821420; and for
Lx=10Z, we find two such points, q % 2.873731 and q % 3.383129. It is not
clear to us how these non-Beraha real isolated limiting points behave as
Lx Q., e.g., whether their number is bounded or unbounded.

For all the lattices we have studied, we observed empirically that there
is at least one vanishing amplitude ai(q) at each of the Beraha numbers up
to BL+1 (see Table X). It is reasonable to conjecture that this holds for all L
(in agreement with a similar conjecture for the square lattice; ref. 16,
Conjecture 1):

Conjecture 7.1. For a triangular-lattice strip of width L with free,
cylindrical or ‘‘zig-zag’’ boundary conditions, at each Beraha number
q=B2,..., BL+1 there is at least one vanishing amplitude ai(q). That is,
det D(q)=0 for q=B2,..., BL+1.
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Table X. Beraha Numbers Bn That Are Zeros of

det D(q)a

L Beraha numbers

2F B2 B3
3F B2 B3 B4
4F B2 B3 B4 B5 B6
5F B2 B3 B4 B5 B6
6F B2 B3 B4 B5 B6 B7
7F B2 B3 B4 B5 B6 B7 B8
8F B2 B3 B4 B5 B6 B7 B8 B9
9F B2 B3 B4 B5 B6 B7 B8 B9 B10

2P B2 B3
3P B2 B3 B4
4P B2 B3 B4 B5 B6
5P B2 B3 B4 B5 B6
6P B2 B3 B4 B5 B6 B7 B10
7P B2 B3 B4 B5 B6 B7 B8 B10
8P B2 B3 B4 B5 B6 B7 B8 B9 B10 B14
9P B2 B3 B4 B5 B6 B7 B8 B9 B10 B14
10P B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B14 B18
11P B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B14 B18
12P B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B18 B22

2Z B2 B3
4Z B2 B3 B4 B5 B6
6Z B2 B3 B4 B5 B6 B7
8Z B2 B3 B4 B5 B6 B7 B8 B9
10Z B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

a Those shown in boldface (resp. normal face) correspond
to the vanishing of a dominant (resp. subdominant)
amplitude.

In contrast with the square-lattice case (ref. 16, Conjectures 7.2 and
7.3), however, we find that there is a vanishing amplitude [hence
det D(q)=0] also at some Beraha numbers larger than BL+1. Indeed, we
find examples for each boundary condition (see Table X):

• For free boundary conditions, q=B6 is a zero of det D(q) for
L=4F.

• For cylindrical boundary conditions, q=B6 is a zero of det D(q) for
L=4P; q=B10 is a zero for L=6P, 7P, 8P; q=B14 is a zero for
L=8P, 9P, 10P, 11P, 12P; q=B18 is a zero for L=10P, 11P, 12P; and finally,
q=B22 is a zero for L=12P.

• For ‘‘zig-zag’’ boundary conditions, q=B6 is a zero of det D(q) for
L=4Z.
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We have systematically checked all Beraha numbers up to B50 to make this
list.

Please note that for free and ‘‘zig-zag’’ boundary conditions, we have
found only one case each in which a Beraha number beyond BL+1 is a zero
of det D(q), namely the relatively small value of L=4. It is conceivable
that for all larger L there are no such Beraha zeros, as is conjectured for all
L for the square lattice (ref. 16, Conjecture 7.2). However, this conjecture
clearly cannot be true for cylindrical boundary conditions. There is pre-
sumably some pattern that tells us which Beraha numbers q=Bk with
k > L+1 can be zeros of det D(q). Thus far only a few Beraha numbers
(B6, B10, B14, B18, B22) have appeared on that list. Indeed, we conjecture that
the pattern is the following:

Conjecture 7.2. For a triangular-lattice strip of width L with
cylindrical boundary conditions, the Beraha numbers where det D(q)
vanishes is given by the union of the sets {B2, B3,..., BL+1} and
{B4k−2 | k=1, 2,..., NL/2M}, the upper limit on k being the integer part of
L/2.

7.3. Nature of the Fixed Zeros

In Section 2 we discussed the ‘‘fixed’’ zeros that occur at small integers
q (here q=0, 1, 2, 3) when the graph fails to be q-colorable. From the point
of view of the transfer-matrix formalism, these fixed zeros can arise in
either of three ways:

1. All the amplitudes ak vanish at q. Then Zn(q)=0 for all lengths
n \ 1.

2. All the eigenvalues lk vanish at q. Then Zn(q)=0 for all n \ 2.

3. ‘‘Mixed case:’’ Neither all the amplitudes nor all the eigenvalues
vanish at q, but for each k either ak or lk vanishes at q (or both). Then
Zn(q)=0 for all n \ 2.

Let us now summarize what we have found concerning the nature of these
fixed zeros for triangular-lattice strips:

q=0, 1. At q=0, 1 all the amplitudes vanish, due to the prefactor
q(q−1) in the left vector u. These points therefore belong to Case 1.

q=2. At q=2 the behavior depends on the boundary conditions and
on the strip width Lx:
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• Free boundary conditions:

– Lx=2F: The one eigenvalue vanishes at q=2 (Case 2).

– Lx=3F: There is one nonzero eigenvalue with a zero amplitude,
and one zero eigenvalue with a nonzero amplitude (Case 3).

– Lx=4F: There is at least one nonzero eigenvalue with a zero
amplitude and exactly one zero eigenvalue with a nonzero amplitude
(Case 3). The transfer matrix at q=2 is not diagonalizable: it has a non-
trivial Jordan block corresponding to l=0.

– Lx \ 5F: There is at least one nonzero eigenvalue with a zero
amplitude, at least one zero eigenvalue with a zero amplitude, and exactly
one zero eigenvalue with a nonzero amplitude (Case 3). We also find that
for all Lx \ 4F the transfer matrix at q=2 is not diagonalizable, i.e., it has
nontrivial Jordan blocks (all corresponding to eigenvalue l=0).

• Cylindrical boundary conditions:

– Lx odd: All the amplitudes vanish, due to the prefactor
q(q−1)(q−2) in the left vector u (Case 1).

– Lx=2P: The one eigenvalue vanishes at q=2 (Case 2).

– Lx=4P: There is one nonzero eigenvalue with a zero amplitude,
and one zero eigenvalue with a nonzero amplitude (Case 3).

– Lx even \ 6P: There is at least one nonzero eigenvalue with a zero
amplitude, at least one zero eigenvalue with a zero amplitude, and at least
one zero eigenvalue with a nonzero amplitude (Case 3).

• Zig-zag boundary conditions:

– Lx=2Z: This is identical to Lx=2F (Case 2).

– Lx=4Z: There are two nonzero eigenvalues with zero amplitudes,
and one zero eigenvalue with a nonzero amplitude (Case 3).

– Lx even \ 6Z: There is at least one nonzero eigenvalue with a zero
amplitude, at least one zero eigenvalue with a zero amplitude, and at least
one zero eigenvalue with a nonzero amplitude (Case 3).

q=3. The point q=3 is a fixed zero only for cylindrical boundary
conditions with strip widths Lx that are not a multiple of 3. There are two
distinct situations:

– Lx=4P: Both eigenvalues vanish, so that the whole transfer
matrix vanishes (Case 2).

– Lx=5P: There is one nonzero eigenvalue with a zero amplitude,
and one zero eigenvalue with a nonzero amplitude (Case 3).
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– Lx=7P, 8P, 10P, 11P: There is at least one nonzero eigenvalue with
zero amplitude, at least one zero eigenvalue with a nonzero amplitude, and
at least one zero eigenvalue with a zero amplitude [or nontrivial Jordan
block corresponding to l=0 with no contribution to the partition function
for any n \ 1] (Case 3). We also find that for Lx \ 8P the transfer matrix at
q=3 is not diagonalizable, i.e., it has nontrivial Jordan blocks.

APPENDIX. NUMERICAL COMPUTATION OF <.

n=1(1 − txn)

In this appendix we discuss briefly some of the technical issues
involved in the numerical computation of Baxter’s products (6.6). Every-
thing can be expressed in terms of the function

R(t, x)= D
.

n=1
(1−txn), (A.1)

which is defined for complex t and x satisfying |x| < 1 and was first studied
by Euler. (60) Here we need the cases t=±1 and t=± a cube root of unity.
A more detailed discussion, including proofs, can be found in ref. 61.

The numerical computation of R(t, x) clearly becomes delicate when
|x| ‘ 1. In particular, direct use of the product (A.1) gives an algorithm that
is only ‘‘linearly convergent,’’ i.e., the number of significant digits in the
answer grows linearly with the number of terms taken. Moreover, the con-
stant of proportionality in this relation is proportional to 1− |x|, and thus
deteriorates linearly as |x| ‘ 1. Finally, there is severe loss of numerical
precision when multiplying numbers that are very near 1. An alternative
approach can be based on the representation

log R(t, x)=− C
.

k=1

tk

k
xk

1−xk
, (A.2)

which is valid whenever |x| < 1 and |tx| < 1. This sum is again only linearly
convergent, but the problem of loss of numerical precision is alleviated by
use of the logarithm.

A much more efficient algorithm can be based on the identity

R(t, x)= C
.

n=0

(−t)n xn(n+1)/2

(1−x)(1−x2) · · · (1−xn)
(A.3)

due to Euler.26 Because of the xn(n+1)/2 factor in the numerator, this algo-

26 For a proof of (A.3), see, e.g., ref. 62, p. 19, Corollary 2.2; ref. 63, p. 34, Lemma 4(a); or
ref. 64, pp. 22–23.

rithm is ‘‘quadratically convergent:’’
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Proposition A.1 [Ref. 61]. Define

an=
(−t)n xn(n+1)/2

(1−x)(1−x2) · · · (1−xn)
. (A.4)

Then, for |t| [ 1 and |x| [ e−c (c > 0), we have

(a) DN — : C
.

n=N
an : [

ep
2/6c−N(N+1) c/2

1−e −(N+1) c

(b) dN —
|;.

n=N an |

|R(t, x)|
[
ep
2/3c−N(N+1) c/2

1−e −(N+1) c
.

Corollary A.2 [Ref. 61]. Let K \ 0, and suppose that |t| [ 1 and
|x| [ e−c (c > 0).

(a) If N \= p
2

3c2
+
2K
c

, then DN [ e−K.

(b) If N \=2p
2

3c2
+
2K
c

, then dN [ e−K.

It turns out (61) that the a priori bound of Proposition A.1(b) is asymp-
totically within 9.1% of being sharp when t=1, 0 < x=e−c < 1 and
N± 1/c (moreover, in this case it is asymptotically sharp as c a 0). But
since this bound is overly pessimistic in other cases, it is of some value to
provide an a posteriori bound on the truncation error that is more realistic,
when x ¨ (0, 1), than the a priori bound. Here is such a bound, which can
be used a stopping criterion in the numerical algorithm:

Proposition A.3 [Ref. 61]. Let |t| [ 1, |x| [ e−c (c > 0) and N>
(log 2)/c. Then:

(a) DN — : C
.

n=N
an : [ |aN−1 |

e −Nc

1−2e −Nc

(b) d −N —
|;.

n=N an |
|SN |

[
|aN−1 |
|SN |

e −Nc

1−2e −Nc
where SN — C

N−1

n=0
an .

[Note also that dN [ d −N/(1−d
−

N).]

In particular, if N \ (log 3)/c, we have DN [ |aN−1 | and d −N [ |aN−1 |/|SN |.

Let us conclude by making some brief remarks about the numerical
precision that is required in intermediate stages of the calculation based on
(A.3). It turns out (61) that the largest term maxn |an | can be as large in
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magnitude as ep
2/12c (and is indeed of this order when 0 < x < 1), while the

answer R(t, x) can be as small in magnitude as e−p
2/6c (and is indeed of this

order when t=1 and 0 < x < 1). It is therefore necessary to maintain, in
intermediate stages of the calculation, approximately (p2/4c)/log 10 %
1.07/c digits of working precision beyond the number of significant digits
desired in the final answer.

We used all three algorithms—the product (A.1), the logarithmic sum
(A.2) and the quadratically convergent sum (A.3)—and carefully cross-
checked the value of R(t, x); we also verified numerically the error bounds
of Proposition A.1, Corollary A.2 and Proposition A.3. In order to
guarantee that the roundoff error is under control, we performed all com-
putations using Mathematica with a working precision of at least 100
digits and often much more (increasing the working precision until the
answer is independent of the precision used).
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